

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the

Degree of Master of Science at the University of Waikato.

August 2017

© 2017 Bo Si

The PiSharp IDE

for

Raspberry PI

Bo Si

Abstract

The purpose of the PiSharp project was to build an IDE that is usable for beginners

developing XNA-like programs on a Raspberry-Pi. The system developed is capable of

1. Managing and navigating a directory of source files

2. Display a file in a code text editor

3. Display code with syntax highlight

4. Automatically discovering program library structure from code namespaces

5. Compiling libraries and programs automatically with recompilation avoided if

source code has not been updated

6. Compiling and running from the IDE

7. Editing more than one file at a time

8. Providing code compilation for global and local names of variables, methods and

classes.

Acknowledgements

Firstly, I would like to thank to Bill Rogers. I am very grateful for his kindness, concern

and endless help over this project.

Secondly, I would like to thank to Lichao Wang and James Boud for their previous

contributions inspired this project.

Last but not the least, I would like to thank to my family and friends for their support and

help.

Contents

Abstract .. ii

Acknowledgements .. iii

Contents .. iv

Chapter 1. Introduction ... 1

1.1 Raspberry Pi ... 2

1.2 Operating Systems(OS) on Raspberry Pi ... 6

1.3 Alternatives to Raspberry Pi .. 7

1.3.1. UDOO ... 7

1.3.2. HummingBoard ... 8

1.3.3. BeagleBone Black ... 9

1.3.4. Why Raspberry Pi ... 10

1.4 Development Environment .. 11

Chapter 2. Literature Review .. 16

2.1 JBBRXG11 .. 16

2.2 Pi-XNA .. 18

Chapter 3. Underlying System .. 21

3.1 Raspbian ... 21

3.2 QuickSharp .. 24

3.2.1. Basic Layout and Architecture of QuickSharp ... 24

3.2.2. Scintilla&ScintillaNET ... 29

3.2.3. WeiFenLuo.WinFormsUI .. 29

3.2.4. Embedded options ... 30

3.3 Mono .. 33

3.3.1. Mono Components .. 33

3.3.2. Mono on Raspberry Pi .. 35

3.3.3. Mono’s GUI toolkits ... 36

3.4 GTK+ ... 41

Chapter 4. Issues porting QuickSharp to Raspbian .. 44

4.1 MoMA analyzer report ... 45

4.2 Modification for running PiSharp on Linux .. 48

Chapter 5. Text Editor... 50

5.1 Text Editor in QuickSharp on Windows .. 50

5.2 Create and Use Scintilla Shared Library on Raspbian ... 54

5.3 Text Editor in PiSharp .. 59

5.3.1. Porting issues and possible solutions for the Text Editor on PiSharp 59

5.3.2. Scintilla-GTK Text Editor Creation .. 72

5.3.3. Notification system in PiSharp ... 75

5.3.4. GDK Keys Mapping. .. 76

5.3.5. Scintilla-GTK Window Close ... 77

Chapter 6. “Build” System ... 78

6.1 Build-tool Replacement ... 84

6.2 PiSharp Build Process Enhancements ... 88

6.2.1. Build Process of Light-Weight Programs ... 92

6.2.2. Build Library for Complex Program Structure ... 94

6.2.3. Build Program from a Project File .. 103

Chapter 7. Auto-Completion(IntelliSense) ... 104

Chapter 8. Conclusion and Future Work .. 105

Appendix A .. 106

Appendix B .. 109

Appendix C .. 119

Appendix D .. 120

References .. 121

1

Chapter 1. Introduction
Today, “computer” is no longer only the PC, but also smartphones, video game consoles,

tablets, wearable electronics, and any embedded digital devices with programmable

computing resources. They are participating in numerous activities in people’s work,

study, entertainment and daily lives. Almost everyone roughly knows about how to

interact with them. Most people, especially the younger generations that are digital

natives after a short-term familiarity can simply operate their computers, e.g. check

emails, browse web pages and open up a picture or a movie onto the display by clicking a

mouse or swiping a finger. People believe computers are smart because they can do very

fast and accurate computation and carry out diverse tasks. When they enjoy the

convenience of using featured software to interact with their computers, most are only

curious about a computer’s capability rather than how a computer actually works, because

it is a basic part of people’s lives, just like a television or a microwave. In fact, computers

are not as smart as most people think. Programming process develops all software, from

simple applications to complicate operating systems. Computers only attempt to achieve

users’ expectations or complete pre-assigned when they receive a set of instructions. In

short, the “smart” of computers comes from careful and specific programs, and not

computer components.

When mentioning the phrase “computer graphics”(CG), the first thing that most people

will associate would be animation, movies effects or video games. With the rapid

development of computer graphics technology, a great number of movies and games are

fully computer animated. They are becoming one of the most common entertainment

forms. Aside from these, CG technology is also used in a board field, involving images

and charts of data in a presentation, architectural design and modeling, urban planning,

animated product demonstration, advertising animation, scientific simulation and so on.

Compared to text or static picture, CG technology uses give more intuitive feedback to

people. There is no doubt that, with the highly improved graphics processing unit,

computer graphics still have enormous potential uses that are waiting for more people to

develop and program.

2

1.1 Raspberry Pi

The purpose of this project is to port an existing IDE from Windows platform that helps

people easily learn and write 3D graphics programs on a Raspberry Pi. The Raspberry

Pi(R-Pi) is a single board microcomputer that has been developed by the Raspberry Pi

Foundation in the United Kingdom. With a display and input devices like a mouse and a

keyboard, the R-Pi is sufficient for most general-purpose things that a typical PC can do,

like games, high-definition videos and the Internet access. According to the Raspberry Pi

official documentation, the organization mainly intended to promote the teaching and

learning of computing fundamentals in education institutions over the world so that more

people of all ages would be able to take part in learning programming and understanding

how computers work in a low-cost way [1].

The concepts for Raspberry Pi’s early prototypes started from Atmel Corporation

manufactured microcontrollers in 2006[2]. Later, due to the more and more mature

processors for mobile devices that were powerful enough to provide excellent

multimedia, the first formal Raspberry Pi(Model B revision 1) was launched in early

2012. Few months later, an upgraded revision of Model B was released with as twice as

much memory space than the previous one. So far, the Raspberry Pi family members

increased to about 20, including Model A series, Model B series, Compute Module series,

Zero series. Raspberry Pi 2 and Raspberry Pi 3 are both in Model B series that represent

the second and the third generation of Raspberry Pi. The Figure 1 from Rasp.tv shows a

photo of the Raspberry Pi family up to February 2017. Among them, the Model A family,

Compute Module family, and Zero family are stripped-down devices. They cut down the

power of the processor, RAM, or other components to reduce the size of the board for low

power embedded projects or industrial applications. Compared with the same period of

the stripped-down models, Model B series are the higher-spec variants of Raspberry Pi

allowing more complex embedded projects and also general computer use. The Raspberry

Pi 2 Model B is used for this project. Figure 2 shows the layout of Raspberry Pi 2 Model

B board. It has a Broadcom BCM2836 System-on-a-Chip(SoC), which integrates an

ARMv7 processor, GPU block and 1GB RAM.

3

Unlike the majority of processors, for example, Intel and AMD as found on most desktop

PC and laptops using the x86 or x86-64 Instruction Set Architecture(ISA), BCM2836

uses ARM architecture. The ARM architecture today is not designed for the typical PC,

but it is very commonly utilized in modern mobile devices because ARM is a simple

reduced instruction set computer with low power consumption. An instruction set

Figure 1 Raspberry Pi Family
[3]

Figure 2 Raspberry Pi 2 Model B
[4]

Ethernet

microSD Card

Slot

(Back of Board)

HDMI

OUT

micro USB POWER

(5V 1A DC)

4×USB2.0
BROADCOM

BCM2836

4

architecture is the form of machine code that a processor can execute. Because different

ISAs determine different specifications of machine codes and native commands, a

program compiled for the x86 ISA, will not be able to executed by an ARM processor.

For this reason, the ARM-based Raspberry Pi will be not compatible with major software

for typical x86-based PC.

Raspberry Pi Foundation claimed that the GPU on Raspberry Pi “provides OpenGL ES

2.0, hardware-accelerated OpenVG, and 1080p30 H.264 high-profile encode and decode.

The GPU is capable of 1Gpixel/s, 1.5Gtexel/s or 24GFLOPs of general purpose compute

and features a bunch of texture filtering and DMA infrastructure” [5]. It means that the

GPU generates 1*109 display pixels/second, 1.5*109 texture access/second, 24*109

floating-point calculations/second. Therefore, Raspberry Pi is capable of running a well-

maintained 3D graphics program.

Table 1 lists three generations of Raspberry Pi Model B specifications: the original

Raspberry Pi, Raspberry Pi 2 and Raspberry Pi 3. Compare with the original Raspberry Pi

board, the second and third generations mainly upgrade the chip that improves the

performance on CPU, GPU or RAM. The chip on Raspberry Pi 2 provides a 900MHz

quad-core 32-bit ARMv7 CPU with 1GB RAM, and the one on Raspberry Pi 3 is

upgraded to 1.2GHz 64/32-bit ARMv8 CPU and a more powerful GPU. In addition, both

R-Pi2 and R-Pi3 board are equipped with 4 USB2.0 ports for mouse, keyboard or other

USB-port external devices connection. They add more General Purpose Input-

Output(GPIO) headers up to 40 pins and integrate both composite video and audio into a

3.5mm phone jack as a video output method. Besides the Ethernet, Raspberry Pi 3 also

supports Wireless and Bluetooth for network access.

5

 Original Raspberry Pi Raspberry Pi 2 Raspberry Pi 3

Released Date April-June 2012 February 2015 February 2016

Price US $35

System-on-a-Chip Broadcom BCM2835 Broadcom BCM2836 Broadcom BCM2837

CPU 700MHz ARM1176JZF-S 900MHz ARM Cortex-A7 1.2GHz ARM Cortex-A53

No. of Cores 1 4

4 Architecture 32-bit ARMv6 32-bit ARMv7 64/32-bit ARMv8

GPU Broadcom VideoCore IV @ 250 MHz

OpenGL ES 2.0, 24 GFLOPS

3D part of GPU @ 300

MHz, Video part of GPU

@ 400 MHz

OpenGL ES 2.0, 28.8

GFLOPS

Memory(RAM) 512MB* 1GB

1GB Onboard Storage SD Micro SD

Micro SD

Onboard Network 10/100 Mbit/s Ethernet

10/100 Mbit/s Ethernet;

Wireless(150 Mbit/s);

Bluetooth(24 Mbit/s)

No. of USB2.0

ports

2 4

No. of GPIO 26 pins 40 pins

Video Output HDMI; raw LCD panels via MIPI display interface (DSI); composite video(R-Pi: RCA

jack/R-Pi2, R-Pi3: 3.5mmTRRS jack)

Audio Output 3.5mm phone jack; HDMI

Power Source 5V via Micro-USB or GPIO header

*Early launched Raspberry Pi Model B board just had 256MB RAM

To keep the weight and size low, all Raspberry Pi models are designed to use an SD

card/micro SD card for long-term storage and booting rather than a hard drive(HD) or

solid-state drive(SSD). The Raspberry Pi 2 provides three different approaches to video

output: a 3.5mm TRRS jack for composite video, an HDMI(High-Definition Multimedia

Interface) port for plugging into a high-quality display like a TV or a monitor with high

resolution and a DSI(Display Serial Interface) for the flat-panel displays typically used in

tablets and smartphones.

Table 1 Raspberry Pi Models specifications[6]

http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/Broadcom

6

1.2 Operating Systems(OS) on Raspberry Pi

An operating system is used to manage hardware and to provide a number of libraries

allow software running on a computer. Windows and OS X operating systems are

dominant in the majority of household and family desktop and laptop PCs. However, the

official Raspberry Pi OS uses neither of them, because they are close sourced which is

difficult to be modified to run on ARM-based Raspberry Pi. In contrast, Linux system is

an open-sourced operating system widely used in servers and embedded systems. The

Raspberry Pi Foundation promotes and maintains its official operating system based on

one of Linux distributions called “Debian” Wheezy and names it as “Raspbian”. The

“Raspbian” refers to the combination of “Raspberry Pi” and “Debian”. It is specially

designed for the Raspberry Pi. The Programming languages installed with Raspbian on

Raspberry Pi are Python, C, C++, Java, Scratch and Ruby. More detail of Raspbian will

be described in Chapter 3 – “Underlying System”.

There are several third-party distributions ported to the Raspberry Pi, such as Ubuntu

MATE(based on regular Ubuntu ARM Hard-Float distribution is exclusive to Raspberry

Pi 2 and Raspberry Pi 3), Windows 10 IOT Core(a version of Windows 10 for embedded

devices), RISC OS(a non-Linux distribution but widely used on ARM chipset), and

OSMC(open-source media center) [7], and so forth. The Windows 10 IOT Core also called

“Windows 10 Internet of Things Core” is available for Raspberry Pi 2 and 3. It is mainly

designed to allow development of programs for embedded devices using Visual Studio on

Windows, with remote running and debugging via network connection. However, “it does

not include the user interface(‘shell’) or the desktop operating system”[8]. Google’s

popular Android platform, which is widely used by mobile devices, in particular

smartphones and tablets around the world, is developed on a Linux core. This implies

Android is possible for Raspberry Pi. Although a few versions of Android for R-Pi are

available from the Raspberry Pi community and R-Pi enthusiasts, those operating systems

are not stable enough for everyday uses.

7

1.3 Alternatives to Raspberry Pi

The mainline Raspberry Pi board upgrade cycle is relatively long, since the foundation

launched the original Raspberry Pi Model B in early 2012. Many Raspberry Pi users in

forum have expressed a desire for a new fast Raspberry Pi with upgraded features like a

new processor, more memory or a GIGABIT Ethernet. However, the Raspberry Pi makers

believed the earlier Raspberry Pi boards(Model B, B+) had sufficient features for users,

and that improvements could raise the price. So the Raspberry Pi upgraded gradually to

retails at the $35.

The advent of the Raspberry Pi is not only for people who do not require super-fast PC,

but has also inspired microcomputer enthusiasts to create some amazing embedded

projects. While Raspberry Pi has been a pioneer in the industry of tiny hardware for

development, a rapidly increasing number of rival products now compete with Raspberry

Pi. There are many single-board microcomputers available today, such as UDOO,

HummingBoard, Banana Pi, BeagleBone and so forth. They have been released with fast

chips and also have competed on price and performance. Similar to Raspberry Pi, most of

them are designed to use on ARM architecture and run with Linux distributions. Among

them, some boards offer great components and performance. In this section, some well-

known microcomputers are similar to Raspberry Pi will be briefly introduced.

1.3.1. UDOO

UDOO is a powerful microcomputer based on a prototyping board that is suitable for

software and embedded projects development. It was released in April 2013. The board

equipped with two different types of processors: A 1GHz ARM i.MX6 Freescale

processor comes with either a dual or quad-core for both Android and LINUX

distributions, and the ARM SAM3X same as the chip on the Arduino Duo board, running

with 1GB of on-board DDR3 RAM. The dual-core board provides Vivante GC 880 and

Vivante GC 320 while the quad-core board offers Vivante GC 2000, Vivante GC 355 and

Vivante GC 320 as the integrated graphics[9]. According to the summary of UDOO’s

8

specification on Wikipedia, each processor provides three separate accelerators for 2D,

OpenGL ES2.0 3D and OpenVG[10]. In addition, the things UDOO beats the original

Raspberry Pi in is that an UDOO has more GPIO pins, a GIGABIT Ethernet, a camera

connector, and even the quad-core version has a Wi-Fi module and a SATA port.

However, an UDOO is more expensive than Raspberry Pi; that extra power priced from

$115 to $135. Figure 3 shows the basic layout of UDOO Quad.

1.3.2. HummingBoard

Another powerful alternative to Raspberry Pi is HummingBoard. Figure 4 shows the

layout of a HummingBoard. HummingBoard is an ARM-based development board

modelled after the Raspberry Pi. It was launched in July 2014. SolidRun Ltd

manufactures and sells the boards in three models ranging from $45 to $120 with

different level of configurations(components). All HummingBoard models are more

powerful than the original Raspberry Pi equivalents, intended to provide better

performance and flexibility to DIY projects. The board runs with a detachable 1GHz

Figure 3 UDOO Quad[11]

9

ARMv7 processor and 512MB/1GB of RAM module rather than the built-in 700MHz

ARMv6 and 512MB of memory of the original Raspberry Pi. It means users can upgrade

their HummingBoard by switching a new module with a faster chip or multi-core chips

and more memory in the future. The Hummingboard is also supported by a built-in

graphics processor(GPU) that is capable of handling 3D graphics, or for a higher price a

GPU with support for quad shading to give faster and more realistic 3D effects. The

professional version of HummingBoard comes with an integrated onboard microphone

and mSATA connector.

Similar to the Raspberry Pi, there are various choices of open source operating systems

available to run on HummingBoard such as LINUX distributions of Ubuntu, Debian and

ArchLinux, as well as Android OS and media center systems like XBMC.

1.3.3. BeagleBone Black

BeagleBone Black is a low-cost microcomputer board like the Raspberry Pi, which was

released in April 2013 with $55, but more targeted to development experts and embedded

project enthusiasts. Figure 5 shows the BeagelBone Black board. It has much more

powerful on-board components than the original Raspberry Pi in the same era. The

BeagleBone Black provides a single-core 1GHz ARM Cortex-A8 processor with 512MB

Figure 4 HummingBoard
 [12]

10

of RAM. 4 GB on-board storage allows to boot with pre-installed Linux distributions or

Android ROMs. Therefore, people do not have to pay extra for storage. In contrast, the

drawback is that, the on-board storage also could be a limitation, which restricts the

possibility of swapping operating system in a flexible and efficient way.

1.3.4. Why Raspberry Pi

At $35, the Raspberry Pi is at an affordable price for most learners and DIYers, which is a

large part of its success. On the other hand, the Raspberry Pi is intended to be an

educational tool rather than sold for its performance. Although it is also a much stripped

down computer, the Raspberry Pi is still sufficient for many PC users who do not need a

super-fast computer. The Raspberry Pi Model B generations are sufficiently capable of

running a modern Graphical User Interface(GUI) based operating system(Raspbian) and

performing general computing tasks.

The Raspberry Pi now has become the most famous single-board microcomputer, which

is widely used in teaching situations and embedded projects. It has a professional group to

maintain and keep updating the operating system to make sure Raspberry Pi can be used

in a stable way for daily life and educational purpose.

Figure 5 BeagleBone Black
[13]

11

1.4 Development Environment

Getting started with graphics programming, there are various applications for developing

graphics, such as XNA with Visual Studio, Unity, SFML, Processing, OpenFrameworks,

Quartz Composer and EMOTION. XNA is a wrapper around native DirectX graphics

library, which is intended to allow developers to write 2D and 3D graphics programs with

Visual Studio and run them on Windows platforms. In early 2013, Microsoft claimed that

the XNA would be fully abandoned in 2014, and “the XNA Game Studio is not in active

development, and DirectX is no longer evolving as a technology” [14]. Fortunately, other

open source framework implementations of XNA, including MonoGame and SlimDX,

continue to evolve. This project decided to base the Raspberry Pi development on XNA

as it had been experienced and found it is suitable for teaching 2D and 3D graphics

programs and understanding programmable graphics pipeline.

However, neither XNA Framework nor Visual Studio IDE can be directly used on the

Linux-based Raspbian operating system. The MonoGame and its supported IDE

“MonoDevelop”(now rebranded as “Xamarin”) was first considered, because they are

designed to be used for cross-platform, including Windows, OS X and most Linux

distributions. Both MonoGame and MonoDevelop are built on top of “Mono” which is a

cross-platform implementation of Microsoft .NET Framework providing C# compilers,

Common Language Runtime and compatibility libraries for multiple operating systems.

Because of Pi’s limited performance, the fully featured MonoDevelop provides

comprehensive facilities that cause it to load and run slowly on the Raspberry Pi.

Additionally, other factors such as versions of Mono used or lack of related libraries lead

it to be unstable on ARM-based Raspberry Pi and not capable of developing all C#

programs. On the other hand, Wang(2014) stated in his research that MonoGame

“currently does not support development on Raspberry Pi. As MonoGame is targeted to a

number of different platforms, and the performance of Raspberry Pi is limited, even if

MonoGame was available on Pi, it would be a little bit complicated for Pi to program

with XNA. What is more, MonoGame strives for exact source code compatibility with

12

XNA. This is not desirable for shader coding.[15]” Therefore, in order to push the ease of

graphics programming on Raspberry Pi forward, the project would be divided into two

parts.

In the first part, when programming with XNA on Raspberry Pi, the ideal result is the

code is similar to that on Windows system so that when people go back to Windows can

easily duplicate or develop programs without extra learning costs. As the major low-level

graphics functions provider, XNA requires DirectX to access graphics card(s). Figure 6

illustrates the architecture of an XNA program based on DirectX. However, DirectX is

specific to the Windows system. An alternative to the DirectX API(Application

Programming Interface) is needed, as well as a method of interaction between XNA-like

programs and graphics system via the new alternative. This part has been completed by

another student at the University of Waikato, Lichao Wang, who worked on rewriting

some of the XNA classes and investigated the possibility of building and displaying

graphics with a supported graphics API – OpenGL ES on the Raspberry Pi. The basic idea

is taken from the JBBRXG11 project which is an open source extension of the

Microsoft’s XNA game development system to inherit the features that geometry shader

from DirectX10 and both tessellation and compute shader from DirectX11.

In the other part, a modern IDE is required to ensure graphics programming on Raspberry

Pi in an easy and flexible way. An integrated development environment(IDE) is a

software suite provides program development facilities that typically involve a graphics

Figure 6 Architecture of an XNA Program
[16]

13

user interface(GUI), source code editor, a compiler and a debugger. Some IDEs such as

Microsoft’s Visual Studio and Eclipse also support for multiple languages and code auto-

completion(IntelliSense). Owing to lack of available IDE for XNA programs on

Raspberry Pi, Lichao Wang had to start his part of the project by inputting all reference

content and classes file names in the command terminal. Considering graphics libraries

can be large and complex, having code auto-completion and build automation is worth the

added learning effort of the IDE. So far, a number of software or systems support remote

running and debugging of programs on Raspberry Pi, such as the Windows 10 IOT core

OS and an extended package of Visual Studio – VisualGDB for deploying C/C++

programs from Windows to Linux platforms. However, it also means that users have to

own both a Windows PC and a Raspberry Pi, which would increase the cost. Therefore,

this part of the project attempted to enable users developing graphics programs on a

single Raspberry Pi. Instead of looking for an existing IDE that can run with the XNA-

like program on a Raspberry Pi, this project will focus on porting a lightweight IDE from

Windows platform to the specified Linux distribution – Raspbian.

“Since XNA games are written for the(C#) runtime, they can run on any platform that

supports the XNA Framework with minimal or no modification. Games that run on the

framework can technically be written in any .NET-compliant language, but only C# in

XNA Game Studio Express IDE and all versions of Visual Studio 2008 and 2010(as of

XNA 4.0) are officially supported[17].” As Lichao Wang rewrote the XNA classes in the

C# language, a working version of “XNA Framework” is available on the Raspberry Pi.

Therefore, the target IDE must supply C# language supports, and initially include or is

capable of importing a C# compiler and Common Language Runtime(CLR) to compile

and run the XNA-like programs on the Raspberry Pi. As introduced above, Mono

Framework provides C# compilers and the Common Language Runtime, which works on

most Linux distributions. As a result, this project will port an existing lightweight open

source IDE on Windows platform to Raspbian by Mono components.

A number of Windows programming environments for C# language support were

14

considered for porting to Raspberry Pi, involving SharpDevelop, MonoDevelop, X-

develop, Xacc and QuickSharp.

SharpDevelop is a fully featured open-source IDE mainly for C#, F# and VB.NET

languages on the Microsoft’s .NET platform. It provides debugging, code analysis, build

automation, code completion, and Windows Forms designer just similar to Visual Studio.

The MonoDevelop is a GTK#(Mono GUI toolkit) implementation of SharpDevelop

which was ported to be cross-platform based on Mono platform.

xacc.ide is an open-sourced small IDE mainly targeted at .NET development. It supports

multi-language syntax checking and compiling features.

X-develop is a commercial IDE for multiple languages and targets for cross-platform,

including .NET platform, Mono platform and Java platform. It provides common modern

IDE features such as code completion, syntax error checking, and so on.

QuickSharp is an open-sourced lightweight IDE targets to Microsoft’s .NET platform and

supports Mono platform. It provides syntax checking, error indicator, code completion for

multiple languages. Additionally, the plugin-structured IDE allows users extend custom

features. For example, a new program language support. The QuickSharp is completely

written in C# language.

Table 2 compares above IDEs run on Windows in the aspect of whether they are capable

of compiling and running with Mono, lightweight, open-sourced, error message display,

code completion(IntelliSense) and the requirement of extensibility was included to allow

the possible addition of compile time content management to the IDE.

15

 Lightweight Mono
Open

Source

Error

Message
IntelliSense Extensibility

SharpDevelop      

MonoDevelop      

Xdevelop      

Xacc      

QuickSharp      

Eventually, QuickSharp was chosen as the smallest, and most likely to work on Raspberry

Pi. To sum up, the ultimate goal of this part of the project aims to port QuickSharp IDE

from Windows platform to Raspberry Pi and extend the IDE to be able to process XNA-

like program. The target IDE runs on Raspberry Pi is called “PiSharp”.

Table 2 comparison of C# support IDEs

16

Chapter 2. Literature Review

The purpose of this project is to allow people to develop and learn XNA-like 3D graphic

programming. This chapter introduces the previous research on implementing and

extending XNA classes. It will first describe an open-sourced extended version of XNA

on Windows platform, which has developed at the University of Waikato, and follows by

describing the other part of this project that porting XNA classes to be compatible with

Raspberry Pi, which developed by another student － Lichao Wang.

2.1 JBBRXG11

“XNA is a freeware set of tools with a managed runtime environment provided by

Microsoft that facilitates video game development and management.[18]” It was first

released in 2006 and the latest version of XNA(XNA 4.0) is built on top of Microsoft’s

native DirectX 9 graphics library. For this project, an XNA-like toolset built by Lichao

Wang was used. It was based on an earlier project called “JBBRXG11”. According to the

project description of JBBRXG11 on the CodePlex, JBBRXG11 is a project developed at

the University of Waikato, attempted to extend an open-sourced implementation of

XNA(SlimDX) to access DirectX 10 and DirectX 11 libraries, and use the features in

particular geometry shaders, hull shaders and domain shaders for tessellation, and

compute shaders. In 2011, Bill Rogers started the project and built the first version by

XNA 3.1 and DirectX 10, which was unofficially called “SlimDXna”, to allow using

geometry shaders in XNA program. A year later, James Boud ported the JBBRXG11

project to XNA 4.0 and also DirectX 11 for tessellation and compute shaders uses. [19]

JBBRXG11 project attempted to convert the all XNA 3.1 classes within the open-sourced

SlimDX Framework to XNA 4.0, and enable user’s graphics program access DirectX 11

methods and forwards to the graphics card(s). However, it is not completed. Although the

JBBRXG11 toolset still partly relies on XNA 3.1, it demonstrated how an XNA

framework interacting with low-level APIs and inspired the approach that porting XNA

classes to another platform for Lichao Wang’s project. Figure 7 shows the JBBRXG11

project architecture.

17

Figure 7 Architecture of a JBBRXG11 Program
[16]

18

2.2 Pi-XNA

As explained in section 1.4, this project has been divided into two parts. This section

introduces the basic idea of Lichao Wang’s contribution to the entire project. His

project(also called “Pi-XNA” project) focused on investigating whether developing

XNA-like programs on the Raspberry Pi was feasible. Meanwhile, the project tried to

rewrite some parts of the fundamental XNA classes in order to allow XNA-like program

run on a Raspberry Pi. Because the DirectX is not available on Linux distributions, in

particular, Raspbian, OpenGL ES 2.0 that supported by Raspberry Pi’s GPU is used to

replace the DirectX providing the low-level graphics APIs. Figure 8 illustrates the

architecture of a typical graphics application running on Raspberry Pi. In the Pi-XNA

project, OpenGL ES 2.0 and EGL APIs are both required in the modified XNA classes to

get accessed to the graphics system. EGL(Embedded-System Graphics Library) “is an

interface between rendering APIs such as OpenGL ES or OpenVG and the underlying

native platform window system”[20]. In Pi-XNA project, the EGL library is mainly

responsible for interacting with native Raspbian X Window system, initializing EGL data

structure, handling graphics context management and drawing surface and binding frame

buffer binding for rendering.

Arm

Media Application 3D Application 2D Application

OpenMax OpenGL ES Open VG

EGL

Kernel Driver

Videocore IV GPU

Open

Source

Closed

Source

Binary

Blob

Figure 8 Raspberry Pi software Architecture
[20]

19

Wang(2014) pointed out “When programming with the modified classes on Raspberry Pi,

users’ programs are similar to XNA programs on Windows, but the underlying classes

interact with graphics systems through the OpenGL ES 2.0 library[15]”. Figure 9 shows the

Pi-XNA program architecture.

OpenGL ES is a cut-down version of the widely used OpenGL graphics API because it

was designed for rendering 2D and 3D graphics on the limited performance of embedded

systems. For example, ARM-based Raspberry Pi. Unlike DirectX bindings to the

Windows platform, OpenGL is an open source and cross-platform graphics API to interact

with a GPU. OpenGL is widely used on Linux distributions, Windows, OS X, and other

platforms.

The Pi-XNA project used Raspberry Pi supported OpenGL ES 2.0 library. The early

versions OpenGL ES 1.x are implemented by OpenGL 1.5 specification provided Fixed

Function Pipeline. The OpenGL ES 2.0 replaced the Fixed Function Pipeline with a

programmable pipeline that enabled developers programming on embedded system can

customize rendering effects by altering pixels, vertices and texture in shaders. Figure 10

and Figure 11 show the Fixed Function Pipeline and OpenGL ES 2.0 programmable

graphics pipeline.

Figure 9 Architecture of a Pi-XNA Program
[15]

20

Finally, the Pi-XNA project successfully built a set of graphics classes that allows an

XNA-like program to compile and produce textured 3D models animation and displayed

with lighting on screen. Although the Pi-XNA did not port the entire XNA classes to

Raspberry Pi and tiny differences existed between the XNA and the Pi-XNA(e.g. the

XNA uses HLSL as the shading language while the Pi-XNA uses GLSL), the project

showed the possibility of writing XNA-like programs on the Raspberry Pi. Additionally,

it implemented a number of shading effects and mathematical calculations.

Figure 10 Fixed Function Pipeline
[21]

Figure 11 OpenGL ES 2.0 Programmable Pipeline
[21]

21

Chapter 3. Underlying System

This chapter introduces the background of platforms and crucial components that support

porting a PiSharp application, and then respectively explains how they are applied in this

project. The subsections start with an introduction of the target Linux operating system

running on Raspberry Pi – Raspbian. After that, the second section discusses the detail of

QuickSharp application, which is ported to Raspberry Pi, in the aspects of QuickSharp’s

architecture on Windows and the features of this development environment. Finally, this

chapter presents the primary parts of alternative components including Mono, GTK+ that

used in the PiSharp project.

3.1 Raspbian

Raspbian is an official support operating system for Raspberry Pi devices. It is optimized

and maintained by Raspberry Pi Foundation based on a Debian Wheezy hardware floating

point version. The first version of Raspbian was accomplished by Mike Thompson and

Peter Green in 2012 and now becomes to the most widely used operating system on

Raspberry Pi. The latest version of Raspbian has been switched the desktop environment

from LXDE(abbreviation for Lightweight X11 Desktop Environment) to a Pi-specific

version – PIXEL(abbreviation for Pi Improved X-Window Environment, Lightweight).

According to Long published on Raspberry Pi blog and responded in comments, the

PIXEL desktop environment involves a modified LXDE desktop environment with the

Openbox window manager configuration settings[22]. The new desktop environment made

the most efforts on GUI-level appearance optimization and new applications addition. In

PiSharp project, Raspbian is chosen as the operating system that supports low-level GUI

environment for the ported IDE. Figure 12 shows the Raspbian Desktop based on LXDE.

22

The X Window system is commonly used in UNIX-like system only provides low-level

graphic user interface(GUI) framework such as graphics primitives input device

interaction, drawing window on screen and that allows other desktop environment build

on top. The LXDE is a desktop environment implementation based on X11 and uses

GNOME/GTK+ GUI toolkit(GNOME is also a desktop environment built on top of the

X11).

The X Window system consists of hardware-level components(X server), application-

level components(X client), the communication protocol – X Protocol. The X server runs

on local computer as a graphics resource provider and input devices event listener, which

is a core of a GUI system. On the other side, X client applications can run on local or

remote computer to communicate with X server for processing the user’s events. For

example, redraw and display on screen. A simple example of X Window system is shown

in Figure 13.

Figure 12 Raspbian Desktop(LXDE)

23

Figure 13 Simple example of X Window System[23]

24

3.2 QuickSharp

3.2.1. Basic Layout and Architecture of QuickSharp

Owing to the restrictions of processor performance, memory capacity and data storage on

the Raspberry Pi, a lightweight development environment with a simple development

approach is required as the target IDE. The development environment needs to be open-

sourced and compatible with Mono runtime so that it could be port to a LINUX

distribution – Raspbian. Moreover, intending to easily write, compile and run XNA-like

programs, features like build automation, error message display, debugging and code

completion(IntelliSense) are expected to be involved in the development environment.

As introduced in Section.1.4, QuickSharp was chosen to be ported to Raspbian.

QuickSharp is an open-sourced lightweight IDE targeted to Microsoft’s .NET platform.

More importantly, the QuickSharp and its some significant components are open source

and built on top of Microsoft’s .NET Framework 3.5 Windows Forms GUI toolkit.

Despite the Window Forms bindings to native Win32 API in managed code on Windows

platform, Mono components ported it to cross-platform and provides the Mono version of

Windows Forms library. It means the QuickSharp IDE itself is possible to be compiled

and test on the Mono platform.

According to the QuickSharp documentation, the open-source components are:

 DockPanelSuite project: .NET-based project provides a Visual Studio-style

windowing framework;

 Scintilla: a Win32-based library provides the core of the text editor;

 ScintillaNET: a .NET based wrapper around Scintilla library allows Scintilla to be

used within a .NET application as a common Windows Forms control;

 SharpZipLib Library: provides zip and general archive file management;

 SQLite and System.Data.SQLite Libraries: provide database management.[24]

25

Because QuickSharp uses the docking feature from DockPanelSuite’s WinFormsUI

project to manage windows, it presents a Visual Studio theme-like layout that two file

manager windows are respectively docked to the sides; an output window is docked to the

bottom; then opening files in text editors are filled in the rest of client window. The basic

layout of the QuickSharp IDE is shown in Figure 14, and Figure 15 illustrates the

architecture of QuickSharp.

Figure 14 QuickSharp Basic layout

26

Microsoft .NET Framework is one of Common Language Infrastructure(CLI)

implementations together with libraries to access the windowing libraries. The CLI

defines an international standard specification of execution and runtime environments in

which “applications written in multiple high-level languages can be executed in different

system environments without the need to rewrite those applications to take into

consideration the unique characteristics of those environments.[25]” QuickSharp IDE

relies on the .NET compilers and Common Language Runtime(CLR) for its multiple

programming languages support.

Unlike other modern IDEs, the QuickSharp IDE is designed to allow the rapid creation,

compilation and execution of C# programs without using projects or solution files to

manage all items, such as source files and references, and produce a single binary file.

Instead, QuickSharp IDE prefers to develop each file individually “to give maximum

flexibility in structuring projects and is designed to make the most of the component-

based architecture of .NET[24]”. However, this method is neither convenient to beginners

nor XNA-like programs which involve a large number of graphics classes and

QuickSharp IDE

WeiFenLuo.WinFormsUI

 MS .Net Windows Forms

Features Plugin

Figure 15 Architecture of QuickSharp IDE on Windows

QuickSharp.Core

Build&Run

Features

.Net

Compilers

&

CLR

 MS .Net Framework

Features Plugin

Text Editor

Scintilla

(Win32)

ScintillaNet

27

mathematical classes. Therefore, PiSharp project decided to reorganize the build process

in QuickSharp.

As shown in Figure 15, the QuickSharp features are presented as a modular architecture

that ensures a flexible and efficiently extensibility by adding or remove plugins. As all

features plugins’ carrier, “QuickSharp.Core” provides fundamental facilities for entire

QuickSharp IDE. Literally, it is the core of the QuickSharp IDE, which provides the

interaction and appearance management on main user interface and most pop-up window,

file operations, user profile and plugins management.

The QuickSharp contains a great number of plugins mainly consisting of following

several parts: QuickSharp.BuildTools, QuickSharp.Language, QuickSharp.Editor,

QuickSharp.TextEditor, QuickSharp.OutPut, QuickSharp.Explorer,

QuickSharp.WorkSpace, QuickSharp.CodeAssist.

“QuickSharp.BuildTool” provides the default Compile and Run tool menu and toolbar

entries, but also provides its own extensible tools framework via a BuildToolManager

plugin. This plugin provides the infrastructure for languages only that support compile

and run actions. Specific tools and languages support require additional plugin –

QuickSharp.Language.*.

“QuickSharp.Language” is a collection of language support plugins. It is catalogued by

different type of programming languages. The QuickSharp IDE supports a number of

programming languages including ASP.NET, C#, Dbml, Html, JavaScript, VB.NET,

Wsdl and Xml. Each language component defines the document handling and at least one

default build tool and build command configuration. It then associates with the

“QuickSharp.BuildTool” component to accomplish the entire compile or run operation

deployment.

“QuickSharp.CodeAssist” is collection of code completion(IntelliSense) for specific

28

languages. It makes it easier for developers to use various program entities such as

members, classes and namespaces, avoiding the need to remember detail and it avoiding

spelling errors. This allows program entities to be listed for insertion into the editor by

invoking the code assist pop-up window. The pop-up window presents a list of the class

or members, as appropriate.

“QuickSharp.Editor” associates with “QuickSharp.TextEditor” to present a container

required a Scintilla-based control. The complete text editor can do a number of text

editing behaviors, such as “cut”, “copy”, “paste”, “undo”, “redo”, “editor find/replace”,

“file save” and so on. It maintains the association between registered document types and

the corresponding LEXER. A language represents a specific document type recognized by

the editor and is mapped on to an internal LEXER. The LEXER(lexical analyzer)

determines how the editor interprets the structure of a document, the language determines

how the structure is presented(such as syntax coloring and fold points.).

“QuickSharp.Output” provides an output window that output the result from the programs

that compile or run within QuickSharp IDE. The text content presents into two forms of

view: a list view and a text view. The list view output is used to indicating and locating

error messages in editors. Moreover, the actual procedure call of building and running is

accomplished in the QuickSharp.Output plugin.

“QuickSharp.WorkSpace” is a plugin window that shows the current selected directory

and provides file management services, such as file open, rename, copy, delete, compress,

move to other folder and so forth.

“QuickSharp.Explorer” is a plugin window that shows a subset of the disk file system.

The explorer provides file management services are very close to the workspace. Both

explorer and workspace are very useful in a multi-file project development case.

29

3.2.2. Scintilla&ScintillaNET

Scintilla is an open source text editing component, written in C++, intended to be used in

a part of a program. The Scintilla component supports for multiple platforms such as

Windows, OS X with COCOA, QT and LINUX distributions with GTK+. The API

provides advanced features for editing and debugging source code in multiple

programming languages including syntax highlighting, searching, replacing, error

indicators, and so on. There are a number of projects which use the Scintilla component.

In particular, text editors and development environments, including Notepad++, SciTE,

Wing IDE, LSW DotNet-Lab(LSW-DNL) and PythonWin[26].

As a derivative of Scintilla, ScintillaNET is a wrapper for Win32-based Scintilla

component written in the C# language, which can be used as general controls in .NET

Windows Forms applications. ScintillaNET allows the use of text editing features from

Scintilla and provides some additional features, like multiple key-command bindings.

QuickSharp did not develop its own text editor. Instead, it uses “ScintillaNET” project.

“ScintillaNET” is based on a famous source code editing component – Scintilla.

ScintillaNET is the .NET implementation of wrapper around the Scintilla component.

ScintillaNET supports a pre-built text editor with syntax highlighting and many other

features like multiple key-command bindings to application or IDE. The LEXERs which

used by QuickSharp’s editor are the part of Scintilla that provides a means of

distinguishing what a piece of text is in the context of a language.

3.2.3. WeiFenLuo.WinFormsUI

WeifenLuo.WinFormsUI library is an open-sourced alternative to Visual Studio themes

which provides docking window layouts. It is built on top of the .NET Framework

Windows Forms. The Dock panel WinFormsUI project was first released by Weifen Luo

in 2006. In QuickSharp’s GUI system, the docking library not only docks opening text

documents to each other, but it is also responsible for docking all non-editor windows

30

contained in the main window, including Explorer, WorkSpace and Output windows.

According to the DockPanelSuite documentation, WinFormsUI library support several

dock style, such as DockLeft, DockRight, DockTop, DockBottom, Dock*AutoHide,

Document, Float and Hidden.

 DockLeft, DockRight, DockTop, DockBottom: the on-screen window dock to the

appropriate boundary of the multiple-document interface(abbr. MDI) container

window;

 DockLeftAutoHide, DockRightAutoHide, DockTopAutoHide, DockBottom-

AutoHide: similar to above style but hide just showing a tab

 Document: fix the window in the middle of the MDI container and showing with a

little tab on the top

 Float: apart from the MDI parent, but can be docked into the container by users

 Hidden: make the dockable window is invisible[28]

An example of docking window system uses method is demonstrated in later Section 5.1

The DockPanelSuite project(docking window) primarily aims to provide a Visual Studio

style of use for Windows applications. However, a number of docking functions or

related methods requires to get access to native Win32 calls, such as DragDetect and

SendMessage. Those invokes are not available on Mono/Linux platform. The

DockPanelSuite maintainers efforted to allow the WinFormsUI to be compatible with

Mono platform by sacrificing some Windows native features. For example, the drags and

drops. More detail of altering WinFormsUI project to port to Mono/Linux platform will

be described in Chapter 4 and Chapter 5.

3.2.4. Embedded options

Most commonly used IDEs, for example, Visual Studio, utilize text-based “project” files

or “solution” files to describe and organize the information, relations and configurations

that are required while building a project. In contrast, according to the QuickSharp

31

documentation, QuickSharp’s build module is based around each source file producing a

corresponding output file. The QuickSharp documentation claims that “the IDE intends to

bring maximum flexibility in structuring projects and is designed to make the most of the

component-based architecture of .NET, dividing a project into multiple output files

allowing the QuickSharp build system to be optimized enabling(only) changed files to be

recompiled”[24]

QuickSharp has a build tool configuration system that can be used to set some compiler

options. However, to specify which files and libraries should be used in a compilation

QuickSharp requires the user to set “embedded options” which are formatted comment

included in C# source files. The QuickSharp documentation includes the following

sections describing the system.

QuickSharp’s build tool configuration allows compiler settings to be customized at a general

level but occasionally it is necessary to provide options for a specific program. For example,

there may be a need to reference a library or include a resource in a program. Embedded file

options allow build processes to be configured for a program by 'embedding' the options

directly in the program’s source files. Embedded options are specially formatted comments

that are ignored by compilers but are recognized by QuickSharp as additional build

instructions. There are two types of embedded options: compiler options and runtime options.

Compiler options

Compiler options allow additional configuration information to be passed to the compiler(or

any build tool) and are formatted as follows:

//$ options here

The ‘//$’ indicates the start of a compiler option and must be included without any spaces

between the opening comment and the ‘$’. The text following the ‘//$’ will be passed to the

compiler as part of a build tool format string in place of the macro ${EMBEDDED_OPT}.

Compiler options can be included in a source file and will be passed in the order they appear.

32

Typical uses for compiler options are to reference libraries, embed resources or include

additional source files in the compilation.

//$/r:Mono.Data.sqlte.dll

//$/res:myapp.resources

//$ file2.cs file3.cs

Runtime options

Runtime options allow runtime arguments to be passed to a program when run from within

QuickSharp and follow a similar format to compiler options:

//@ arguments here

Unlike compiler options, only one option string will be passed to a program; the first one

found will be used. The text following the ‘//@’ will be included in the build tool format

string in place of the macro ${RUNTIME_OPT}.

The QuickSharp IDE is intended to serve as a thin wrapper around the .NET Framework

tools. By providing an editing environment and tool integration, it attempts to ease the

process of working with these tools without attempting to hide them behind visual editors or

wizards. Consequently, QuickSharp is not really intended as a beginner's tool, but for

experienced developers. QuickSharp provides a lightweight environment for

experimentation.

Therefore, in this project, porting the QuickSharp IDE to Raspberry Pi is not the only

task, but there is also a need to simplify the users’ processes to make sure beginners can

easily start, such as optimize a project creation process; automatically add reference files

or libraries to a project while compiling and running process, and so forth.

Overall, with this improvement the QuickSharp IDE seems satisfactory as the target IDE

that can be used to develop and manage XNA programs on a Raspberry Pi.

33

3.3 Mono

On 12 November 2014, Microsoft announced that it was open sourcing the server-

side .NET stack in the areas of ASP.NET, the .NET compiler, the .NET Core Runtime,

Framework and libraries, and making it available to run Linux and Mac OS platforms[28].

Unfortunately, a significant infrastructure of the QuickSharp’s GUI system, the Windows

Forms class library, is contained in the client-side .NET stack for which Microsoft had no

plan for open-sourcing and supporting different platforms. To port the .NET-based

QuickSharp application to the Raspbian OS, an alternative to the .NET Framework work

on Linux was urgently needed. A widely used Common Language Infrastructure(CLI)

implementation on Linux systems is “Mono”, which is usually considered to be a clone of

the .NET Framework. According to Mono’s documentation, Mono is an open-source

implementation based on the .NET Framework, developed by Xamarin, enabling C# and

other .NET language developers to create and run .NET applications cross-platform. It

was first announced by Ximian in the middle of 2001. After several acquisitions, the

primary maintainer and sponsor of the Mono project – Xamarin officially became a

subsidiary of Microsoft Corporation in early 2016. Along with advances of the Mono

project, Mono now supports running on multiple operating systems including Android,

most Linux distributions, OS X, Microsoft Windows, Solaris, and a variety of CPU

architectures including x86, x86-64, ARM and PowerPC[29].

3.3.1. Mono Components

As described in the Mono documentation, the Mono project provides several crucial

components for C# developers:

 Mono’s compilers for the C# programming language;

 Mono Runtime is designed to implement CLI specification and is compatible with

the .NET Common Language Runtime;

 Microsoft .NET Framework compatibility Class Library which enables

Microsoft .NET applications to port to Linux. This set of library comprises Base

Class Library, ASP.NET, ADO.NET, Windows Forms and other class libraries that

provide most .NET Framework functionality;

34

 Mono Class Library extends functionality outside of Microsoft .NET Framework

stack and provides platform-specific class libraries such as GTK# for GUI

development, Mono.Cairo for 2D graphics drawing, SharpZipLib library for

zipping files, database libraries and Unix integration libraries(e.g. Mono.Posix)

[28].

Among them, both Pi-XNA project and PiSharp project reference parts of the .NET

Framework Compatibility Class Library, which allows the projects to be developed in

a .NET-like programming environment and support .NET Framework functionality. For

example, Pi-XNA and PiSharp both require the System.IO namespace for file stream

manipulation. Pi-XNA can load texture information from an existing picture and PiSharp

intends to read and write C# source file. In addition, PiSharp uses Mono’s libraries,

offering Windows Forms for GUI systems, file compression for the WorkSpace and data

support for the SQLite database engine. The details of using these libraries in PiSharp

project will be discussed in Chapter 4 of Issues porting QuickSharp to Raspbian.

The objective of the Pi-XNA program is to implement graphics and mathematics C#

classes on the Raspberry Pi for XNA programming. It attempts to provide equivalent

functionality to the XNA API from Windows, on the Raspberry Pi. Technically, the Pi-

XNA project used for standalone Mono C# compiler and runtime. The C# compiler and

runtime are in charge of building and testing XNA sample programs. Additionally, the Pi-

XNA project takes advantages of Mono Runtime interoperability, C#’s capability to bind

to native code on a platform, and access native OpenGL ES and EGL libraries, and low-

level Linux windowing functionality in code.

In the PiSharp project, Mono’s C# compiler and runtime are not only participating in

building and running on PiSharp application itself, but also being embedded within the

PiSharp IDE as third-party tools, to allow C# programmers to easily create and run their

XNA programs. Whilst the primary target is Raspbian on the Raspberry Pi, it should be

able to run on most Linux distributions and other Mono-supported platforms.

35

Historically, the Mono project has developed four C# compilers: gmcs, scms, dmcs and

mcs. Each compiler references a set of the corresponding .NET libraries. Firstly, the

“gmcs” compiler was implemented by C# 3.0 specification and references the libraries

within .NET 2.0 and .NET 3.5. Secondly, the “smcs” compiler also aimed at the C# 3.0

specification, but only referencing a subset of .NET 3.5 assemblies, which are primary for

creating Silverlight and Moonlight applications. After .NET Framework 4.0 was released

by Microsoft, the “dmcs” compiler was built to support the C# 4.0 specification and

reference the .NET 4.0 API. Last but not the least, the “mcs” compiler was first developed

to reference .NET 1.0 and implement C# 1.0 and parts of the C# 2.0 and C# 3.0

specifications. Now evolved to be the unified Mono C# compiler and has replaced all of

the above compilers since Mono 2.11.x.[28] In the PiSharp IDE, the “mcs” compiler is set

as the default compiler for all C# program, although the IDE allows users to add and

configure other Mono compilers.

The Mono Runtime involves a Just-in-Time(JIT) compiler which is used to read the

bytecode produced by the .NET compiler and translate it into native code for use in the

CLR process; By using System.Runtime.InteropServices assembly, managed code can

directly use functions within from unmanaged code. Unmanaged code means source code

written in C, C++, Visual Basic or other high-level programming languages compiled

straight to machine code. In contrast, managed code(which generally refers to source code

written in .NET languages) compiles to Common Intermediate Language(CIL bytecode)

via a CLI compiler at compile-time and is converted by the JIT compiler into machine

code at run-time.

3.3.2. Mono on Raspberry Pi

As has been described in the Raspbian section, Raspbian is an operating system which is

a hardware floating point port of Debian wheezy for the Raspberry Pi and similar devices

that use ARMv6 processors. However, before Mono version 3.2.7, which released in

February 2014 and supported the hardware floating point Application Binary Interface(ABI)

36

on ARM, the most common versions did not work with the hardware floating point

version Raspbian. Therefore, .NET developers had to run software floating point Mono

components on the older Debian Squeeze Linux distribution for Raspberry Pi giving

computation speed far below expectations. This project looks forward to getting relatively

fast compilation and running of XNA programs with the high quality of Raspberry Pi’s

capability. To solve this problem, Wang(2014) used a modified Mono components

package in his thesis work, which worked on the original Raspberry Pi Models(Model-B

and B+) based on ARMv6 Hard-Float[15]. As the Raspberry Pi 2, Raspberry Pi 3 and new

Mono versions were launched halfway through this project, the project started with a

Raspberry Pi Model B running Mono 2.11.4 runtime for ARMv6 Hard-Float then

gradually moved to Mono 4.1.0 runtime platform within Raspberry Pi 2. Appendix A

demonstrates the Mono components set up to Raspberry Pi Model B and Raspberry Pi 2.

3.3.3. Mono’s GUI toolkits

The Mono project ships with three GUI toolkits, so as to provide support for different

platforms: Mono WinForms, GTK# and MonoMac. MonoMac is dedicated to providing a

GUI toolkit for .NET/Mono developers create and run windowing applications on OS X.

The toolkit is only available on OS X or iOS because it binds to Apple’s native COCOA

API. In contrast, both GTK# and Mono WinForms are designed as cross-platform GUI

toolkits.

GTK# is a managed wrapper around native GTK+ API written in the C# language. The

GTK+ API provides a group of graphical widgets to create graphical user

interfaces(GUIs) for applications. Using the GTK# toolkit enables native GTK+ GUI

applications to run within the .NET/Mono Framework. The MonoDevelop IDE is a GTK#

implementation of SharpDevelop IDE running on the Mono platform. Meanwhile,

MonoDevelop supports the creation of GTK# applications with a visual designer called

“Stetic” which looks like the Windows Forms designer in Visual Studio. Figure 16 shows

the layout of the Stetic designer within MonoDevelop. The PiSharp project does not use

37

GTK# as it is not necessary. Instead, PiSharp implements its own wrapper to access

Scintilla directly.

The Mono project provides a set of cross-platform .NET Framework compatibility Class

Libraries that allows the .NET wrapped native Windows API to be ported to Mono

platforms. One of the significant implementations is “Mono WinForms” providing a GUI

toolkit for Mono desktop applications as an alternative to the Microsoft’s .NET Windows

Forms API. With the .NET Framework compatibility stack, most .NET Windows Forms

applications can directly work on the Mono platform.

To verify Mono’s compatibility, this project started with a sample program built by Visual

Studio. Figure 17 shows the layout of a simple .NET-based Windows Forms application

which simulates a multi-file text editor running on Windows. In this sample application, a

new Tab page with a RichTextBox control can be added to the window by clicking “New”

within the “File” drop-down menu. Meanwhile, an item with the same names as the Tabs

is listed in the TreeView control docked on the right of the window. Tab pages can be

selected by simply clicking the corresponding item in the TreeView control. The sample

program was built using Microsoft’s Visual Studio IDE on the Microsoft .NET

Figure 16 Stetic designer layout[30]

38

Framework. Figure 18 and Figure 19 illustrate the graphical user interfaces directly

running the executable file from Visual Studio with Mono on Windows and Raspbian OS

respectively.

Figure 17 Windows Forms Program run with .NET on Windows

Figure 18 Windows Forms Program run with Mono on Windows

39

Obviously, the layouts of each interface are very similar but they have slightly different

appearances since the Mono stack uses native drivers for each of the different operating

systems supported, including X11, Win32 and OS X[28]. Aside from this, all features are

achieved on both Windows and Raspbian OS.

Ideally, a .NET Framework application can be ported to a Mono platform without

modification. However, as Mono states in the documentation about WinForms, “it is very

unlikely that the implementation will ever implement everything needed for full

compatibility with Windows.Forms. The reason is that Windows.Forms is not a complete

toolkit, and to work around this problem some of the underlying Win32 foundation is

exposed to the programmer in the form of exposing the Windows message

handler(WndProc). Any control can override this method. Also developers often P/Invoke

into Win32 to get to functionality that was not wrapped.”[28] In other words, the .NET

Windows Forms is a binding over the Windows Win32 API, and most practical

applications use methods that directly invoke Win32 callbacks. This links these

applications to the Windows platform and makes it infeasible for them to operate on other

platforms.

Figure 19 Windows Forms Program run with Mono on Raspbian

40

As shown in the architecture of QuickSharp IDE in Figure 15, QuickSharp and its

WeiFenLuo.WinFormsUI library are built on top of Microsoft’s .NET Windows Forms.

However, if the PiSharp uses another GUI toolkit provided by Mono, like GTK#, it likely

to be necessary to rewrite the entire IDE structure and have to abandon the WinFormsUI

assembly, particularly for the window docking control. Therefore, PiSharp chose Mono’s

WinForms GUI toolkit for the main part of IDE so as to require with less changes to the

structure.

41

3.4 GTK+

As a range of platforms text editing supplier, Scintilla supports editing functions on GTK

platform. GTK+ is one of the most popular GUI widget toolkits for the X Windowing

System(also called as X11 or X). It was initially developed for the X Windowing System

widely used on UNIX-like operating systems, and is now implemented on multiple

platforms including Windows and OS X. X11 does not forms a user interfaces, but offers

basic protocols and graphical primitives for desktop environments to design and display

graphical user interfaces for applications in their own style, and allows users to interact

with the applications using input devices. It means every desktop environment can have a

similar window appearance.

For both the PiSharp and Pi-XNA project, the underlying operating system – Raspbian

uses LXDE(Lightweight X11 Desktop Environment) or LXDE-based

PIXEL(Pi Improved X-Windows Environment, Lightweight) as its major desktop

environment. LXDE is a desktop environment implementation based on the GTK+ 2

toolkit primarily aimed at the X Windowing System.

During PiSharp IDE development, the biggest barrier was the ScintillaNET-based text

editor which cannot be displayed in PiSharp’s docking window system. Instead, the

decision was made in the PiSharp project to produce the text editor for each opened

document within an individual GTK+ top level window using a modified version of

ScintillaNET API.

To create a GTK+ application on the Raspberry Pi, the first step is to set up a GTK+

development environment with the command:

apt-get install libgtk2.0-dev

 OR apt-get install libgtk-3-dev

In a managed program development, the System.Runtime.InteropServices assembly

allows developers to create “DllImport” function declarations for accessing an

unmanaged library with a valid and explicit path, and invoke code inside the library. In

42

other words, it is possible for PiSharp to produce a GTK-based text editor by directly

importing every required procedure call from a GTK+ library. Figure 20 shows the

declaration of GTK Window creation function as the main container for other widgets.

The reason “DllImport” entries identifies a GTK+ library by a name rather than an

explicit path is that the directory where the GTK+ shared library is located, “/usr/lib/arm-

linux-gnueabihf/”, is one of the paths that the dynamic linker searches by default.

The GTK+ environment should be initialized before use to establish connection to the

operating system windowing facilities. Once it is initialized, GTK+ operates with an

event driven model. Usually, GTK+ waits for input in its “main loop”. When a user

action, like key press, occurs the main loop will activate and call the appropriate callback

routine. Although, this is the same mechanism as the Mono WinForms uses, the GTK+

and Mono system will each have their own main loop. This causes difficulties that will be

discussed later.

ScintillaGTK is a custom GTK Widget, and therefore need to run with GTK+. In

particular, GTK+ must be initialized and a GTK+ main loop must be running.

Furthermore, the approach of associating with GTK+ API to produce ScintillaNET-based

text editor for PiSharp IDE is describing in detail in Chapter 5.

The complete architecture of PiSharp IDE is presented in Figure 21. To sum up, Mono is

an ideal tool for porting .NET applications to Linux distributions. In this case, Raspbian.

Figure 20 Import GTK Window creation function into C# code

43

PiSharp IDE

WeiFenLuo.WinFormsUI

Mono WinForms

Features Plugin

Figure 21 Architecture of PiSharp IDE on Linux

QuickSharp.Core

Build&Run

Features

C#

Compiler

&

CLR

 Mono

Features Plugin

Text Editor

Scintilla

(Gtk+)

ScintillaNET

44

Chapter 4. Issues porting QuickSharp to Raspbian

This chapter describes the general issues occurred during porting QuickSharp to Raspbian

platform and exposes corresponding solutions for each of them. The approaches of

implementations and improvement in the areas of IDE user interface, text editor,

programs building process and IntelliSense. Clarify the issues and figure out the feasible

solution.

As described in Chapter3 – “Underlying System”, one of the most significant Mono

components is the Mono runtime. The original QuickSharp project is built with the .NET

Framework on the Windows operating system using Microsoft implementation of

Winforms.

In simple cases, Mono could have been compatible with the executed program and run

with Mono. However, the QuickSharp program or its underlying components such as

WinFormsUI and ScintillaNET require some native procedure calls. Figure 22 shows the

error message of an application invoking the “GetCurrentThreadId” Win32 call, when

directly running QuickSharp on Raspbian. Therefore, the portation should have

commented out those unexpected P/Invoke calls or find alternatives.

In this chapter, the discussion focus on porting the original open source QuickSharp IDE

on Windows to a LINUX distribution Raspbian. The basic method of porting an existing

Winforms Application is taken from an article which is published in the documentation of

the official Mono project website by Pobst[31] as a guide of porting methodology.

Figure 22 error message of P/Invoke

45

The process starts with a tool called Mono Migration Analyzer(MoMA) which can help

developers identify potential issues that may have when porting a .NET application to

Mono. It aids the developer in pinpointing platform specific calls(P/Invoke) and areas in

their code that are not yet supported by the Mono project and therefore will not work in

Mono on Linux distributions. Although many complex factors could not be covered by

the simple tool, the results still can be regarded as a guide to get started on porting an

application to Mono.

4.1 MoMA analyzer report

This project starts with analyzing the potential issues of porting the C# QuickSharp

application. Mono allows to develop and run .NET applications cross-platform

on Windows, Linux, Mac OS X, and Unix. MoMA demonstrates an overview of issues

while porting a .NET application to Mono platform, which helps port a .NET Windows

application to Linux.

The MoMA detail report of the QuickSharp SDK package has been illustrated in

Appendix B. MoMA reports four types of potential issues. The detected issues

descriptions from MoMA documentation are included in this section.

Figure 23 using MoMA for QuickSharp

46

Missing Methods

“This is the most severe type of issue. These methods represents the methods that have

not been implemented yet in Mono. If you try to compile your application that uses these

methods with Mono, you will get an error like:

myfile.cs(22,16): error CS0117: ‘xxxxxxxxxxxxxxxxx’ does not contain a definition for

‘xxxxxxxxxxxxxxx’

If you compile your application with Microsoft’s compiler, your application will run on

Mono until it tries to use the missing method. It will then exit the whole application with

an error like:

System.MissingMethodException: Method not found:xxxxxxxxxxxxxxxxxxx

These method calls must be worked around and removed from the application before you

can compile or run on Mono. Alternatively, you can implement the function yourself in

Mono and submit it for inclusion in future version of Mono.”[37] According to the report

from MoMA, the QuickSharp source code does not contain [Missing Methods] problem.

MonoTodo

“Methods marked with [MonoTodo] may or may not cause problems for your application.

Sometimes a method may be marked with this to remind a developer that some small part

is not implemented or to clean it up later. Other times, the method may not be

implemented at all and simply will not perform any function. This is generally done to

make an application compile and run, even if it missing some functionality. The detail

report may list a specific reason why the method is marked with [MonoTodo]. Going

forward, it has been requested that any developer who uses [MonoTodo] provide a reason

that can be used for this report. However, numerous pre-existing tags do not have this

reason.

These issues can probably be ignored in your initial porting. The application should still

run without crashing, however there may be missing functionality. Missing functionality

47

can be fixed by working around Mono’s unfinished method, implementing the method

yourself, or waiting until the method is completed in Mono.”[37]

NotImplementedException

“In many cases the methods are not implemented at all, and simply throw a

NotImplementedException as soon as they are called. In other cases, the method may

only throw the exception under certain circumstances, while most calls work as expected.

These issues are similar to MonoTodo’s. It is a gamble as to whether they will cause

problems or not. The application will compile just fine under Mono with these issues, and

you will need to test the application to see if further work are required around these

calls.”[37]

P/Invokes

“P/Invokes(Platform Invokes) are used to call functions that are written in unmanaged

languages, often times provided by the current platform itself(user32.dll, shell32.dll,

kernal32.dll on Windows). However, these can also be calls into your own unmanaged

libraries. Mono can handle these calls when the unmanaged library is available for the

platform you are using, however many times the whole purpose of using Mono is to run

on many platforms.

--All methods called exist in Mono, which means you’re not calling methods that the

Mono project hasn't implemented.

--No P/Invokes are called, which means you’re not calling directly into the operating

system.

--No methods that throw NotImplementedException are called, which means you're not

calling methods that technically exist as a stub in Mono but haven't yet been

coded.(Remember, Mono is an ongoing project.)

--No methods marked with [MonoTodo] are called, which is similar in nature to the

previous category.”[37]

48

4.2 Modification for running PiSharp on Linux

Case Sensitivity:

Pobst pointed out “difference between Windows and many other operating systems such

as Linux is that the file system is case sensitive. That is, in Windows the files ‘readme.txt’

and ‘README.TXT’ are the same, but in Linux those are distinct files.”[31] “Although

this will work on Windows, it will generate a FileNotFoundException on Linux.”[31]

The Path Separator:

“Another issue may run across is the path separator(“\”) used in file paths. In many other

operating systems, such as Linux, the path separator is a forward slash(“/”) instead of a

backwards slash like Windows. In our example, we have hard coded a backwards slash

that will cause our file to not be found.”[31] One thing that could be found is that when

programmers are developing code, they might replace a backslash “\” with double

backwards slash(“\\”) or(@“\”) in file paths to prevent the regular expression of compilers

a backslash escapes the following character to a special character, which can make a

specific path invalid.

Windows ADO.NET:

On a Windows platform System.Data.SQLite is an ADO.NET(database interface)

provider for SQLite Data which is an embedded and serverless SQL database engine. The

original QuickSharp IDE provides a feature work with an ADO.NET compatible database

making it possible to develop queries in QuickSharp and get intelligent code

completion(called “Code Assist” in the QuickSharp IDE) support for SQLite. To keep this

feature in Raspbian, a Mono.Data.Sqlite library is required to substitute the Windows’s

System.Data.SQLite. This was built by the mono-project team in an effort to allow

SQLite features over multiple platforms.

49

ICSharpCode.SharpZLib:

“ICSharpCode.SharpZLib is a Zip, GZip, Tar and BZip2 library on Windows platform

written entirely in C# for the .NET platform.”[36] In the QuickSharp IDE, it is mainly used

to compress multiple files or a folder under a file management scene, such as put into an

archive in WorkSpace or Explorer window and create a new file or project from

templates. The Mono project supports ICSharpCode.SharpZipLib to replace the Windows

version ICSharpCode.SharpZLib.

P/Invoke calls Issues:

Because the original QuickSharp IDE is for Microsoft’s .NET platform running on a

Windows System, there are numerous basic features rely on Windows libraries support.

For example, drag and drop file operation, send and post messages, show scrollbar, and so

forth. These features will be lost while running on Linux distribution because the target

libraries do not exist. At this stage, all Win32 assemblies(user32.dll, shell32.dll,

kernel32.dll) specific Windows system but not implemented in Linux and all referred

function invokes will be temporarily disabled in order to compile the QuickSharp

development environment on Raspbian without harm.

WeifenLuo.WinFormsUI user32.dll, kernel32.dll, ScintillaNET user32.dll, kernel32.dll

shell32.dll and SciLexer.dll(unmanaged library requires Win32 assemblies). The

ScintillaNET replacement will be explained with the text editor. QuickSharp is based on

WinFormsUI for Visual Studio like theme and docking windows. Like drag and drops,

however, some of WinFormsUI features use Win32 native methods which do not exist in

Linux distributions. For example, SetFocus() and GetFocus() are both user32.dll

functions relying on Win32 that are not implemented in Linux system itself or Mono

libraries. They set or retrieve the keyboard focus to a specified window respectively.

After abandoning the Win32 native methods and fixing some other errors, the IDE

displays properly.

50

Chapter 5. Text Editor

The text editor is one of the most significant parts of an IDE. It is where a developer can

write and view source code, supported with syntax highlighting, indicators, code folding,

snippet management and other editing features. In this chapter, the Section 5.1 and

Section 5.2 respectively introduce how the QuickSharp IDE utilizes a .NET implement-

ation of Scintilla(ScintillaNET) and a docking window component(WeifenLuo.Win-

FormsUI) to display multi-document text editors; and the ScintillaNET-based text editor’s

dependencies and usage on Raspbian/Linux. The third section then explains issues of the

text editor in PiSharp after porting from the Windows platform to Raspbian, and describes

the re-formed new text editor within the PiSharp environment in detail.

5.1 Text Editor in QuickSharp on Windows

Figure 24 shows the basic layout of the QuickSharp IDE on the Windows platform. Two

documents: “ConTest.cs” and “ConTest01_1.cs” are sharing the same area, located and

displayed in the middle of the QuickSharp IDE’s main window with tabs. In the

QuickSharp environment on Windows, the multiple document text-editing window is

supplied by two major components: ScintillaNET and DockPanelSuite’s

WeifenLuo.WinFormsUI.

Figure 24 QuickSharp layout with Scintilla-based Text Editor

51

As mentioned in the Underlying System chapter, Scintilla is a text editing component,

written in C++, intended to be a part of a program and is compatible with most common

platforms such as Windows, OS X with COCOA, QT and LINUX distributions with

GTK+. The API provides advanced features for editing and debugging source code in

multiple programming languages including syntax highlighting, searching, replacing,

error indicators, and so on. As a derivative of Scintilla, ScintillaNET is a wrapper for

Win32-based Scintilla component written in the C# language, which can be used as

general controls in .NET Windows Forms applications. ScintillaNET allows the use of

text editing features from Scintilla and provides some additional features, like multiple

key-command bindings. The QuickSharp IDE takes advantage of ScintillaNET for most

program editing behaviors. The WeifenLuo.WinFormsUI library provides docking

window layouts. It is an open-sourced alternative to Visual Studio themes, built on top of

the .NET Framework Windows Forms.

To expose the QuickSharp text editor structure and further explore porting issues, this

project starts with building a sample application called “IDEUIDockSample”. The layout

of this application is demonstrated in Figure 25. Like QuickSharp, “IDEUIDockSample”

is a main parent window, which is assigned as a Multiple-Document Interface(abbr. MDI)

container for WinFormsUI dockable windows. A DockPanel(a WinFormsUI version of

the Windows Forms panel control) is created to fill the client area of the MDI Parent-

Form except for the Menu bar. All MDI Child-Forms will be docked to specified position

on the DockPanel. This application allows users to create document DockState Child-

Forms with a total of three different type of controls: a simple blank Panel colored red for

clarity, a RichTextBox control and a ScintillaNET control. Once a document is created by

clicking one of “NewPanel”, “NewRichText” or “NewScintilla” on the “File” drop-down

Menu, a tab will be shown at the top of the document to enable users to switch between

and manage the multiple documents. In the meantime, the child-window “DocumentList”,

which is docked to the left, simply presents the Workspace/Explorer window of

QuickSharp with a normal TreeView control listing all current open documents within the

sample application. The document DockState Child-Forms are attached to share the rest

52

of window. As shown in Figure 25, each Child-Form may be “torn” off and dragged to a

new position including top, bottom, left and right of the DockPanel or even as a floating

window above the whole MDI Form by indicators.

In the QuickSharp IDE, once a document is created or loaded, the IDE sets up a Child-

Form on the IDE’s main user interface containing a Scintilla-based text editor as a control

object. The WinFormsUI-based EditForm class provides the IDE’s user interface level

interaction. The Child-Form inherits from a QuickSharp self-contained

“ScintillaEditForm” abstract class which provides QuickSharp-specific functionality for

the Scintilla-based text editor so that QuickSharp can react appropriately while a user is

editing documents. For example, QuickSharp will update the status bar at the bottom of

the main window to display the current cursor position when a user clicks in the

document shown in a text editor.

ScintillaNET Editing Control

DockState.Right(MDI Child Form)
DockState.Document(MDI Child Form)

Main Window(MDI Parent Form) with DockPanel

Figure 25 IDEUIDockSample layout

RichTextBox Control

53

According to the Scintilla documentation, when using the Scintilla API on the Windows

platform, the first step is to load an unmanaged Scintilla library: “SciLexer.dll”. The

SciLexer.dll is a Win32 version of a Scintilla library that contains a range of

programming language LEXERs(lexical analyzers) and lexing support features. The

ScintillaNET API loads this library for each Scintilla-based text editor creation. Once the

library is loaded successfully, it will register a new window class “Scintilla” as a new

Scintilla text editing control. This Scintilla control object can be handled like other

Windows controls[26]. The QuickSharp section in the Underlying System chapter

introduces the architecture of the entire QuickSharp IDE in Figure 15. Figure 26 shows

the architecture of the Text Editor part extracted from the QuickSharp IDE architecture

diagram. To be compatible with .NET WinForms applications, ScintillaNET maintains

this registered “Scintilla” class with its own .NET wrapper to communicate with the

Scintilla library at run-time, to bring in Scintilla native features and to improve the

capability of the text editor control. Figure 26 shows the layout of a QuickSharp text

editor running on Windows when a C# document is opened. Both Microsoft .NET

Windows Forms and Win32-based Scintilla use the underlying windowing features of the

Microsoft platform, and the Windows can cooperate because C# code can access a

window by its Win32 handle, even if it was created by C++ code.

QuickSharp Text Editor

WinFormsUI

MS .Net Windows

Forms

EditForm

ScintillaEditForm

Figure 26 Architecture of a QuickSharp Text Editor on Windows

Windows:

ScintillaNET

QuickSharp.Core

Scintilla

(Win32)

54

5.2 Create and Use Scintilla Shared Library on Raspbian

Both the .NET Framework and Mono implementations of the CLI specification support

interoperability features allowing managed code to invoke unmanaged methods that are

implemented in dynamic-link libraries. As introduced in the underlying system chapter

and the Section 5.1, the QuickSharp project and its fundamental dependencies are:

DockPanelSuite API(WeifenLuo.WinFormsUI.Docking.dll) and ScintillaNET API are

written in the C# language. The core code of QuickSharp is completely built on top of

the .NET Framework while the DockPanelSuite API and ScintillaNET API also require

use the interoperability feature to directly access native Windows methods. Although

Mono has the mechanism to access native method, some required Windows native

methods are not available on Linux system or not implemented in Mono Framework.

To port the QuickSharp application to run on Mono, all native usage of Microsoft Win32

API from DockPanelSuite and ScintillaNET has been sacrificed or substituted by

skipping or replacing the Windows P/Invoke call. Among the P/Invoke calls and native

dependencies, the unmanaged SciLexer library which supplies core Scintilla functionality

for ScintillaNET API relies on Windows Win32 native methods. In contrast to

QuickSharp’s architecture, PiSharp is a port of the Windows version of QuickSharp using

the WinForms system in Mono. There is no doubt that the Win32-based Scintilla

library(SciLexer.dll) cannot be directly used by the PiSharp project on Linux

distributions, in this case, Raspbian OS. However, Scintilla source code supports a

number of versions for multiple platforms including Windows Win32, COCOA, QT and

GTK. Unlike the dynamic-linking SciLexer library offered for the Windows Win32

platform, the official Scintilla source code only supports production of a static library(*.a)

for the GTK platform. In general, unmanaged functions implemented in a static library

are linked at compile-time. For each function call, a linker takes a copy of the machine

code of the function from the static library and copies it into the final binary file. In

contrast, a function in a dynamic or shared library, referenced by a program in source

code, is allocated addresses in memory space and loaded at load-time or later at run-time.

https://en.wikipedia.org/wiki/Load_time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)

55

In order to use native Scintilla functions and variables in ScintillaNET, managed

ScintillaNET must embed the unmanaged Scintilla component as a shared library. This

has an added advantage in that using a shared Scintilla library will improve the

maintainability and extensibility of PiSharp, because any new features developed for the

text editor can be supplied in an update version of the Scintilla library without

recompiling the entire program. Therefore, the PiSharp project improves the Scintilla

library to create a shared library instead of a static library so that the functions

implemented in the unmanaged Scintilla library can be easily bound into managed C#

code using the interoperability capability of the .NET/Mono Framework. In the PiSharp

project, the Scintilla core API is no longer the Win32-based SciLexer library but the

GTK-based Scintilla library.

Basically, a Scintilla static library is built from a set of object files(.o) compiled from

corresponding source files. The tool used for producing the Scintilla library is called

‘make’, which reads a specification written in a file called ‘Makefile’. The Scintilla

Makefile compiles each source file into an individual object file and generates a single

archive file(the Scintilla static library) from the object files. To create a Scintilla shared

library, the first step is to create object files that will be gathered into the target shared

library by using the “-fPIC”/“-fpic” flag(may require adding the “-fPIC” flag manually in

early versions of the Scintilla GTK Makefile). The “f” stands for a set of “gcc”

command’s options that “control the interface conventions used in code

generation”[32]. “PIC” is an abbreviation of “Position Independent Code” and means that

the generated machine code can be located at any memory address, which is commonly

used by shared object generation. Typically, shared libraries are named by prefixing with

“lib” and suffixing with “.so”(some shared libraries may be specified with an additional

version number, mirror number or release number). Therefore, the new Scintilla shared

library associated with GTK+ GUI toolkit is named with “libscintilla.so” and the Scintilla

shared library generation command which replaced the static library can be written as:

g++ -shared -o libscintilla.so ScintillaGTK.o PlatGTK.o LexerBase.o LineMarker.o ……

56

The “-shared” command option stands for producing a shared object that can be linked

with other objects to form an executable or other libraries. The “-o” option is following

with a specified output library name. In this case, the output shared library is

“libscintilla.so”.

On Linux distributions, according to dlopen(3) man page, the shared libraries required by

a program are retrieved by searching in the following sequence:

1. A colon-separated list of directories that in the

user’s LD_LIBRARY_PATH environment variable. This requires users manually

export the explicit library path.

2. The list of libraries cached in /etc/ld.so.cache. /etc/ld.so.cache is created by

editing /etc/ld.so.conf and running ldconfig(8).

3. /usr/local/lib(some Linux Distributions may not include this directory in

/etc/ld.so.conf file for default directories searched), /lib and /usr/lib in that order[33].

In the PiSharp project, the “libscintilla.so” library has been placed in /usr/lib directory so

that PiSharp users can run this IDE application without further required Scintilla library

exporting commands.

To consume functions in an unmanaged library from managed code, CLI Framework

Platform Invoke(P/Invoke) features must be used. Specifically, the

“System.Runtime.InteropServices” namespace enables a CLI program to use the

“DllImport” function declaration to specify explicit functions and the dynamic

library(*.dll) or shared library(*.so) that contains them so that they can be used just like a

static entry point. In C#, the “DllImportAttribute” identifies the library and functions, and

defines the functions with the “static” and “extern” keywords. Figure 28 shows a sample

program written in C#, which invokes functions implemented in libscintilla.so and libgtk-

x11-2.0.so GTK+ 2.0 library, builds a Scintilla editor embedded in a GTK top-level

window and defines its output layout. “scintilla_new()” and “scintilla_send_message()”

functions are both implemented in the libscintilla.so library. “scintilla_new()” builds on

top of the GTK widget to create a Scintilla widget that can be added to a GTK container

57

and displayed. “scintilla_send_message()” is the main entry point that allows setting of

parameters and supplying data to the Scintilla API to accomplish the configuration of a

Scintilla widget. Additionally, as both libscintilla.so and libgtk-x11-2.0.so are written the in

the C++ language, and the GTK+ API defines its own data type, the GTK data types are

necessary to convert to C# language defined data types. For instance, “GtkWindow” is used

to define a GTK type window container. The GtkWindow and its parent type such as

GtkContainer, GtkWidget are defined by a numerical value which represents the registered

type ID pointer. In a C# program, “IntPtr” can be used to represent a pointer or a handle

accessing unmanaged code. Figure 27 shows the “GtkWindow” type conversion from C++ to

C#, and lists all GTK-type mappings used in the PiSharp program and further sample

programs. In this sample program, the Scintilla widget is simply configured by adding

some text, allocating a LEXER, setting keywords and coloring them. More usage of the

Scintilla and GTK shared libraries in PiSharp will be provided in following sections.

Figure 29 shows the resulting GTK window.

Figure 27 Gtype mapping

58

Figure 28 a sample C# program calls methods in unmanaged libraries

Scintilla functions declaration

Scintilla widget creation

text, key words, colorization… attributes settings

Figure 29 the output of the GTK+ Sample program

59

5.3 Text Editor in PiSharp

5.3.1. Porting issues and possible solutions for the Text Editor on PiSharp

Since the GTK version of the Scintilla shared library can be successfully built on

Raspbian and the new Scintilla API has been shown to work as described in Section 5.2,

the next step was to use it to implement the text editor in PiSharp. The PiSharp project

started by attempting to directly replace the Win32 version of Scintilla

library(SciLexer.dll) with the new ScintillaGTK library “libscintilla.so”. As explained in

Section 5.1, ScintillaNET wraps the original Scintilla API. On the Windows system,

ScintillaNET needs to import the SciLexer library, so that a Scintilla class must be

registered and a window handle(HWND) of the Scintilla control created before its

constructor can proceed. Therefore, a Win32 dynamic library loading function

“LoadLibrary()” is used in an overridden Windows Forms Control’s properties and

appearance initialization: “Control.CreateParams”. In the PiSharp project, dlopen()

function can be used to import the Scintilla shared library instead of the Windows

P/Invoke call.

However, at this development stage, the PiSharp program is terminated when attempting

to get the handle of the native Scintilla control when the PiSharp IDE is loading a

document into its ScintillaNET text editor. The reason is that all native features of

ScintillaNET require a Scintilla handle when making calls to the native Scintilla control,

and GTK+ version of the Scintilla library does not auto-register a Scintilla window class

when is loaded. Accordingly, a handle of the Scintilla control fails to be created when

initializing the control, because the expected Scintilla window class does not exist. Before

addressing this problem, the following paragraph will introduce how a window handle is

used in a GUI application.

On Windows, a GUI application running and interacting relies on window procedures

receiving and processing window messages which are produced by both system and the

application. The messages cover a wide range of the communications between system and

60

applications or just between applications, such as input events, window changes, task

dispatching, and so on. When the application is started, the operating system creates a

GUI thread(which could be the application’s main execution thread) for it. The thread

attaches a message queue and runs a message loop to handle all events and user requests.

Generally, the events convert into corresponding messages, and the messages get posted

to the thread’s message queue with four parameters: window handle(HWND), message

ID(Msg) and two additional system maintained values(wParam and lParam) which are

described in Table 3.

Property Description

HWND Window handle of the message.

Msg Message identifier constant of the message.

wParam Additional information of the message.

lParam Additional information of the message.

Result Specifies the value that is returned to Windows in response to handling

the message.

As an application may contain multiple windows, Window handles(HWND) are used to

identify and access the appropriate windows that should receive the messages. For each

window, the system uses a window procedure callback(WndProc) for message

processing. The Message ID is used to determine how a window procedure will respond

to a message. For example, A WM_CLEAR message tells the window procedure to delete

selected text in the edit control. The message loop is responsible for listening the

messages in turn from the thread’s message queue and dispatching the messages to

appropriate windows. Figure 30 illustrates a simple Windows messaging system. When

the program starts running, it sets up the user interface and then the application’s GUI

thread goes into the message loop and gets messages by continually checking the queue.

When the thread finds messages, it takes them and dispatches them to the WndProc of the

appropriate windows or sometimes just processes them directly. However, a system

presents a GUI application with a large number of events. An application only processes

some of the messages. To guarantee all messages will be processed, a default window

Table 3 Message structure[34]

61

procedure callback function – “DefWndProc” is used to take over the rest of window

messages that are not processed by the application’s WndProc and provides default

processing.

Like other controls, a Scintilla control can communicate with applications by messages.

Typically, the Scintilla component defines and processes two major types of message:

Scintilla messages(SCI_*) and Scintilla notification messages(SCN_*). Scintilla

messages(SCI_*) are a type of Scintilla-specific commands, and they are mainly

responsible for completing editing activities within a Scintilla object, such as text

modification and retrieval, coloring, zooming, and so forth. The Scintilla notification

messages(SCN_*) are for handling events and states, including key pressing, mouse

clicking, and UI updating in a Scintilla control. Scintilla messages(SCI_*) are usually

used by other programs to tell the Scintilla control what to do or converted from Windows

message in response to operating system messages, while the Scintilla notification

messages(SCN_*) are sent from the Scintilla control to its container to accomplish

Figure 30 Windows Messaging System

Message Loop

Msg

Message Queue

 Msg Msg Msg Msg

WndProc WndProc

 WndProc

……….

Handle

DefWndProc

DefWndProc

DefWndProc

Msgs not processed

……….

62

appropriate behaviors. Some of Windows editing messages(WM_* or EM_*) can be

forwarded to a Scintilla control. These messages will be converted into Scintilla

messages(SCI_*) so that the control can execute system editing requests with Scintilla-

specific methods. For example, if a window procedure of a native Scintilla control

receives a “WM_CUT” message, it will translate the message identifier to “SCI_CUT”,

and then process this Scintilla message, removing currently selected text in the Scintilla

control, and copying the content to the clipboard. The complete message mapping is

illustrated in Appendix C.

The Scintilla documentation introduces two approaches to operate a Scintilla control[26].

The first one bypasses the thread’s message queue and directly sends each Scintilla

message via a Win32 “SendMessage()” function to the Scintilla control’s window

procedure, and returns the processed message result. As for normal message dispatching,

SendMessage requires a window handle to determine which window the message will be

passed to. In this case, the identifier is the handle of Scintilla control. Because the sending

thread of SendMessage() will be blocked and cannot keep performing other commands

until WndProc finishes processing the unqueued Scintilla message, this method could

slow performance down, especially in an intensive command-calling case. In order to

provide better performance, the other option is to maintain a function pointer to retrieve

the address of the Scintilla control’s message handling function(WndProc), and directly

invoke the window procedure callback function, as a normal procedure call, which avoids

the Windows message system. This method only uses the SendMessage() function twice

for each Scintilla control instance, to get a pointer to the Scintilla object and a function

pointer to the control’s WndProc, rather than repeated SendMessage() function calls for

the Scintilla commands. A note is declared in Scintilla documentation: “From version

1.47 on Windows, Scintilla exports a function called Scintilla_DirectFunction that can be

used the same as the function returned by SCI_GETDIRECTFUNCTION. This saves you

the call to SCI_GETDIRECTFUNCTION and the need to call Scintilla indirectly via the

function pointer.”[26]

63

However, the version of the ScintillaNET component in QuickSharp uses neither method.

As the DefWndProc function can provide a default processing for any window message,

ScintillaNET executes each native command by directly calling the Scintilla control’s

default window procedure. Figure 31 shows that ScintillaNET constructs Scintilla

messages associating with the native Scintilla handle and ScintillaNET maintained related

information of the message(if necessary), then directly passes the messages to its

DefWndProc callback function. This function wraps all native Scintilla calls implemented

in ScintillaNET for .NET compatibility. A simple case is to get the current LEXER of the

control. A wrapped “GetLexer()” method to directly call the function in Figure 31, would

be like:

return INativeScintilla.SendMessageDirect(SCI_GETLEXER, IntPtr.Zero, IntPtr.Zero);

All three methods require a native Scintilla handle to determine where the messages will

be sent. However, the Scintilla-GTK shared library cannot provide a pre-registered

window class for the Scintilla handle creation. If PiSharp keeps using the ScintillaNET

communication method or the other that runs without a valid Scintilla window handle, all

ScintillaNET functions support for control window creation and appended features will

fail to access their corresponding native Scintilla methods once a Scintilla control has

been loaded into the PiSharp’s main window.

According to the use of libscintilla.so shared library mentioned in Section 5.2, Windows

runtime interoperability allows the .NET-based PiSharp program to invoke an unmanaged

Scintilla message

identifier(SCI_*)

native Scintilla window handle

ScintillaNET maintained information

Figure 31 ScintillaNET communication method in QuickSharp

64

function from the “libscintilla.so” shared library through “DllImport” command. The

“scintilla_new()” and “scintilla_send_message(ScintillaObject *sci, unsigned int

iMessage, uptr_t wParam, sptr_t lParam)” functions are used in Section 5.2 to create a

GTK-type widget and emulate features of a normal text editor. Using “scintilla_new()”

creates a Scintilla object and “scintilla_send_message()” provides an entry point that

allows a program to send Scintilla-specific messages to the Scintilla object. As a result,

the PiSharp project solved the native Scintilla handle missing issue by creating a GTK-

based Scintilla object and using the “scintilla_send_message()” function to directly send

each called command to this new Scintilla widget. As the altered native communication

method shows in Figure 32, the “SciGtkEditor.sciEditor” is an instance native Scintilla-

GTK widget while “ScintillaSendMessage()” is the Scintilla-specific messages sending

function. In this context, when a document is opened into the PiSharp IDE, the program

no longer crashes by continuous requiring a handle for a Scintilla control. Figure 33

illustrates a state of the PiSharp window opens a “Color.cs” document after using this

altered method. A tabbed document Child-Form is set up on the PiSharp’s main window,

but no Scintilla object displayed on the child form.

Figure 32 native communication method in PiSharp

65

Obviously, this method is not enough to show the Scintilla control properly on the

PiSharp IDE, because at this stage, PiSharp still adds the ScintillaNET wrapped control to

the dockable container despite the fact that Scintilla-specific messages that serve to create

and configure the Scintilla control have been sent to the Scintilla-GTK widget. The

messages will be processed and the message results are just stored in the widget. Ideally,

if all Scintilla-specific messages can be passed to the Scintilla-GTK widget and return the

process result back to ScintillaNET. The ScintillaNET control could be possible to be

shown. It means all properties and notifications will be assigned for both ScintillaNET

and Scintilla-GTK. However, an initialization procedure may just assign data rather than

“set” and “get”. Moreover, some Scintilla function could just be called by event. Figure

34 demonstrates a simple process of setting text to the Scintilla control when a PiSharp

text editor is created. The parent window tries to attach the ScintillaNET wrapped control

with default text as “Scintilla Editor”. ScintillaNET uses the native Scintilla method of

text modification by overriding the Windows Forms control “Text” property. As a result,

when the “Scintilla Editor” text property is assigned, the SetText(string text) function gets

called, it now wraps the PiSharp-specific native communication method -

Figure 33 Resulting Window without Scintilla control displayed

66

“scintilla_send_message()” using the “SCI_SETTEXT” command. Therefore, this

“SCI_SETTEXT” message carries the text and directly calls the Scintilla-GTK widget’s

WndProc. The WndProc processes the message to set the widget text as “Scintilla

Editor”, even though the widget is not displayed yet. A GetText() function does very

similar process. It sends a message with “SCI_GETTEXT” and waits until this message is

processed. Neither an effective message callbacks scheme nor a straight forward way to

add a GTK-type object to a Windows Forms application as common controls existed at

this stage, so it was no wonder that the PiSharp could not present an available text editor.

During PiSharp project development, this was not the only barrier found that hinders a

Scintilla control properly displaying on the docked document MDI Child-Form.

Additionally, when a Windows Forms application runs on Linux system with Mono, a

control cannot be shown on the MDI child window unless it is a float window or other

boundary-state window. To investigate the issue, the WeifenLuo.WinFormsUI-based

“IDEUIDockSample” program was ported to run with Mono on both Windows system

and Raspbian system. The results are shown in Figure 35 and Figure 36 respectively. As

described in Section 5.1, the IDEUIDockSample application allows users to create

docked document MDI child windows with three different controls: a blank Panel colored

red for clarity, a RichTextBox and a ScintillaNET control. The application run with the

Mono-runtime on Windows can do most of the work, except for the Win32 native features

Figure 34 Set and Get Text

Parent Window Scintilla Control

Scintilla-GTK widget

WndProc() SetText()

GetText()

SCI_SETTEXT

SCI_GETTEXT

“Scintilla Editor”

“Scintilla Editor”

“Scintilla Editor”

67

invoked in the docking library, for example, drags and drops of the docked windows. In

contrast, the application run on Raspbian with Mono cannot show any control on the

docked document MDI child windows.

Figure 35 IDEUIDockSample on Windows with Mono

68

Aside from this, an interesting discovery is that if the “dockpanel”, which is the area all

MDI child windows dock onto, is set at a fixed size smaller than the client window size,

with the MDI Child-Forms dock-style set as “Fill”. Then the control is shown, but at the

back of other child windows. The resulting window is displayed in Figure 37.

Figure 36 IDEUIDockSample on Raspbian with Mono

69

To sum up all experiments, because DockPanelSuite’s WinFormsUI component primarily

aims to provide Visual Studio-like themes for .NET Windows Forms applications, it

provides relatively high compatibility for Mono WinForms on the Windows platform.

Most times, a Windows Forms application can be supported by the Mono runtime. Mono

WinForms applications could perform and run very close to Windows Forms applications.

However, some of the .NET Windows Forms functions directly interop Win32 native

methods which are not available on Linux. Therefore, the Mono WinForms

implementation have to implement this functionality by calling X11 functions or via other

existing technologies. This may cause conflicts with other code, because the Mono

WinForms may present GUI application features in different ways, even though the

eventual outcomes look the same. The example in this case was that the WinFormsUI

Figure 37 IDEUIDockSample on Raspbian with Mono

70

component presented a document MDI child window with common control commands in

the wrong sequence.

As explained, to present a proper Scintilla text editor both Scintilla messages

communication in both directions and WinFormsUI compatibility for Mono WinForms on

Linux need to be solved at the same time. Otherwise, although an effective connection is

built between ScintillaNET and Scintilla-GTK widget allowing the Scintilla-GTK widget

send all messages result back to ScintillaNET, the Scintilla control still cannot be

displayed in the docked document window, and vice versa.

There were several possibilities considered or attempted to solve the text editor issues in

PiSharp:

1. Rewrite all of PiSharp window handling to use GTK. Mono provides a GTK# GUI

toolkit which is built on top of the GTK+. The MonoDevelop IDE uses GTK# as

its UI framework. Then, the new GtkWigdet-type Scintilla object could be wrapped

by C# code and directly embedded into a GTK-based UI container once the

PiSharp UI framework was completely rewritten with GTK#. However, the

PiSharp project is too big. The entire PiSharp interface including all top-level

windows and pop-up windows uses the capabilities of Mono WinForms.

Meanwhile, as the container functionality supplier of the Scintilla-GTK widgets,

the WeifenLuo.WinFormsUI project would also need to be rewritten to be

compatible with GTK#.

2. Maintain two widgets for each editor instance, one a docked ScintillaNET object

and the other a separate Scintilla-GTK widget, which would not be visible. Use the

Scintilla-GTK widget as a message processor to receive, process and store all

Scintilla Notifications sent from ScintillaNET, and build callback functions for

each of the message allowing them to send back to ScintillaNET and replicate the

appearance of the real Scintilla-GTK widget. To complete this option, it is

necessary to understand how Mono WinForms presents a window layout. This

71

method could have a heavy overhead because it processes all Scintilla messages

twice(ScintillaNET-ScintillaGTK-ScintillaNET) and might give a bad

performance. Considering the relatively low-performance of the Raspberry Pi

toolkits in CPU and memory, this method was implemented in the PiSharp on

Raspbian.

3. Create an individual top-level GTK Window to hold a Scintilla-GTK object

without window docking and keep it separate from the PiSharp window. As

described in Section 5.1, the text editor on QuickSharp allows users to “tear off”

dockable windows(text editor) and run with this style, so the resulting system of

PiSharp is not completely unlike QuickSharp. Compared with solution 2, this

method sacrifices some appearance consistency but only requires normal the

notifications sending back to the ScintillaNET and forward to the parent window,

to allow PiSharp to respond to the Scintilla-GTK text editor behaviours.

Eventually, the PiSharp project decided to utilize to use this method. Figure 38

illustrates the architecture of PiSharp Text Editor on Raspbian.

PiSharp Text Editor

WinFormsUI

Mono WinForms

(MWF)

EditForm

ScintillaEditForm

Figure 38 Architecture of PiSharp Text Editor on Raspbian

Rasbian:

Scintilla

NET

QS.Core

 Gtk

Scintilla

(Gtk+)

ScintillaGTK

Text Editor

72

5.3.2. Scintilla-GTK Text Editor Creation

In Section 5.2, a sample program demonstrates how C# code invokes unmanaged

functions from both GTK+ library and Scintilla-GTK library via the Mono

implementation of interoperability to present a top-level GTK window with attached a

Scintilla widget. The sample program manages and customizes some Scintilla editing

features such as inserting additional text, assigning a lexical analyzer and highlight

specific characters and strings. Similarly, PiSharp project was extended to define a new

class “ScintillaGTKEditor” which contains the same methods as the sample Scintilla text

editor created within the GTK environment. Some unmanaged functions are wrapped by

C# methods as class properties so that a Scintilla object can respond to requests from

other classes. For example, ShowGtk() wraps the unmanaged “gtk_widget_show_all()”

function which shows a GTK window and its child widget – Scintilla widget. The

EditForm class calls ShowGTK() after all Scintilla configuration is completed, to ensure

that a Scintilla text editor will be displayed as EditForm defines rather than shown with

default settings. The system shows an individual Scintilla-GTK window when PiSharp

attempts to create a Scintilla control from ScintillaNET for a document or a plain text

editor. It also tries to generate an instance of ScintillaGTKEditor to initialize the GTK set

up for both a GTK window and a Scintilla widget. During setup

“scintilla_send_message()” is never used. Internal ScintillaGTKEditor class methods are

used to initialize the attributes and features of Scintilla. After initialization, as described

in subsection 5.3.1, the all the wrapped “scintilla_send_message()” functions in

ScintillaNET can be sent to the Scintilla-GTK widget.

Running two kinds of window causes a problem with message handling. For every GTK

application, a “gtk_main()” is used to run a UI main loop. gtk_main() listens and passes

events to GTK widgets, e.g. a button pressed. Similarly, a Mono WinForms application

runs in its own message loop. The PiSharp system associates with both the Mono

WinForms-based main window and the GTK window. These separate windows each have

their own message loops for handling events. Only one message loop can run at a time,

73

while the other events just wait in their queue and their windows do not respond. For this

problem, the first solution was to use a WinForms method – Application.DoEvent() and a

GTK method – gtk_main_iteration() together in a single infinite loop, which could

process all pending events and force UI update for the two windows. The loop contained

a short delay to avoid excessive processor load. This method worked until the Mono

WinForms window display a dialogbox. For example, when an auto-completion

window(IntelliSense) of PiSharp was popped up, the GTK window was interrupted and

became invisible(screenshot). The reason was that the Mono WinForms dialogue

processor uses a different main loop, which pushed the PiSharp system back to the

previous situation. The final solution was to use an Application.Idle() event to handle the

gtk_main_iteration() as a callback function. Application.Idle() is triggered when the main

window finishes processing thus GTK widget processes all its pending events when the

main window is in the idle state. Then gtk_main_iteration() is blocked and waits for

upcoming events, and so repeatedly. Figure 39 demonstrates the method that maintains

both WinForms and GTK UI main loop.

After this, a GTK Window contained Scintilla-GTK widget can be successfully shown

separate from the PiSharp window. Figure 40 shows the layout of the PiSharp opening

Scintilla-GTK Text Editor. Additionally, a “gtk_window_set_title(IntPtr w, string s)” is

Figure 39 WinForms and GTK UI main loop maintain

74

used to assign the title bar text of a GTK window with current active document name,

otherwise it defaults as “mono”. Even more, when a user changes document content, the

title bar text adds a “*” until the document is saved, which synchronize with the tab text

at the top of client window.

At this time, Scintilla-GTK widget cannot fully highlight for the C# keywords. A straight

forward way is to set the Scintilla LEXER as “cpp” type which contains C# language

analyzer, and then the document properly highlights the C# keywords for the text in

Scintilla-GTK widget. The Figure 41 shows a highlighted C# program in Scintilla-GTK

text editor.

Figure 40 Scintilla-GTK Text Editor

75

5.3.3. Notification system in PiSharp

As a control is a child window, the events occur in the control will be delivered to its

container(parent window). Because there is no Scintilla control on the Editform(tabbed

container), no notification messages from the ScintillaNET-based control proceed. In

contrast, the Scintilla-GTK widget uses signals and callback functions to emit events that

handle the native messages(SCI_*) and notification(SCN_*) by itself. Above all,

ScintillaNET will never receive any Scintilla-GTK notify message.

Originally, ScintillaNET self-handled some event activities to accomplish editing

features, including indicator clicking, text adding and so forth, by send WM_NOTIFY to

the parent window and receiving reflection. To keep those features working properly, the

PiSharp project intends to make a channel(signal emit) for the notifications so that

ScintillaNET can respond to the notifications from a Scintilla-GTK widget and work as

usual.

On the Windows platform, notifications are passed by using the WM_NOTIFY or

WM_COMMAND messages with the window message mechanism. The GTK

Figure 41 highlighted Scintilla-GTK text editor

76

environment uses signal and callbacks system, in which notifications are sent with “sci-

notify” signals to a GTK widget. It then connects the callback to process as defined in the

callback function. The gtk_signal_connect_full(g_signal_connect) function enables

sending Scintilla notifications from ScintillaGTK to ScintillaNET. The PiSharp project

utilizes this method to emit all notifications triggered in the Scintilla-GTK widget.

5.3.4. GDK Keys Mapping.

Another problem occurring in the Scintilla-GTK widget is the key control in which only

characters can be typed in the text editor. In other words, the Scintilla-GTK editor does

not respond to any key bindings or key commands, such as “delete”, “enter”, “ctrl+c”,

“escape”, and so on. The native Scintilla API provides key control of a text editing

application in both text input and commands binding on all Scintilla supported platforms.

As a wrapper around Scintilla API, ScintillaNET intends to take over all the command

bindings from the Scintilla component. In this case, ScintillaNET removes all keyboard

command mapping by setting an empty mapping table so that it can rebuild a new key

mapping table to handle ScintillaNET specific commands for conflicts with the native

Scintilla commands.

The problem is that the PiSharp text editor is built on top of GTK+, which uses the GDK

key map. Additionally, key binding interactivity between ScintillaNET and Scintilla-GTK

did not exist. More specifically, ScintillaNET does not know what keys a Scintilla-GTK

widget has inputted; likewise Scintilla-GTK does not know how a key binding is defined

in ScintillaNET.

To solve this issue, PiSharp constructs a key mapping between the Windows Forms(Mono

WinForms) key codes and the GDK key codes. Furthermore, Scintilla-GTK sends each

key-press event back to ScintillaNET when Scintilla-GTK receives a “key_press_event”

signal, and tells ScintillaNET whether the key input is paired with “SHIFT”, “CTRL” or

“ALT”. So that ScintillaNET is possible to respond with the corresponding command.

77

5.3.5. Scintilla-GTK Window Close

For the reason that PiSharp presents a text editor as a separate window, closing a

Scintilla-GTK text editor can be done in multiple ways, because the PiSharp text editor

requires the independent Scintilla GTK window, the tabbed container window and an

invisible ScintillaNET object simultaneously exist. Therefore, PiSharp needs a bi-

directional closure from the both the tabbed container window and the GTK window and

shut down all the three object in one user closing event.

In QuickSharp, when a user closes a text editor, the container sends a “close” message to

notify the child window – Scintilla control to dispose itself. According to this, the PiSharp

forwards a procedure call which wraps the GTK+ closing function

“gtk_widget_destroy(gtkWindow)” to close the GTK window and release all objects it

holds. Conversely, when a close event triggered from a GTK window, the GTK window

receives a “delete-event” signal. Then GTK window sets a handler for callback function

to trigger a custom event called “SciWindow_CloseEvent”. When the container receives

this event, it processes to close itself and release resource of ScintillaNET. In either case

PiSharp successfully completes the closing of a text editor window.

78

Chapter 6. “Build” System

The primary capability of an IDE that differs from a standard text editor is that the IDE is

capable of compiling, running and debugging programs written in various programming

languages. This section will describe the original QuickSharp compile and run

configurations and how PiSharp manages the build process. It also covers altering the

build system from the Microsoft .NET Framework on Windows to be compatible with the

Mono platform on Raspbian and introduces an approach to enhancing the existing build

process for a complex project architecture.

In a general compilation process, a compiler compiles programmer-readable code(also

called source code)written in C, VB or other high-level programming languages directly

into machine code(ignoring the assembly stage). In contrast, Common Language

Infrastructure(CLI) standard languages, e.g. C#, can be compiled from valid source code

to a second, platform-neutral language called Common Intermediate Language(CIL).

Figure 42 uses C# language source as an instance to illustrate a simplified overview of

a .NET compilation and execution process. Firstly, a C# program is loaded by a

corresponding compiler provided in a specific system environment. Secondly, the

compilation process starts and compiles the source code into CIL code(called

“bytecode”). Afterwards, a platform-specific Common Language Runtime(CLR) is

responsible for executing. The JIT(Just-In-Time) compiler of the platform CLR reads CIL

code and compiles it into machine code(also called native code) that can be executed.

Finally, the machine code compiled by the JIT compiler is executed by operating system

services and outputs the result that the developer requires.

79

The compile time and runtime operations shown in Figure 42 can be performed on

different CPU’s and/or different operating systems. The CIL is system-independent, in

particular, it is possible to compile on x86/x64 Windows platform and run on ARM-based

Raspberry Pi with Linux distributions, or vice versa.

In QuickSharp, the entire build system is constructed in three parts: a BuildTool module,

Language Support modules and an Output module. In fact, both BuildTool module and

Language Support modules are responsible for determining and completing the members

of the target build-command. The concrete build process is integrated into the Output

module. The following Table 4 lists the generic members of a BuildCommand class.[24]

C#

C# Compiler

Common

Intermediate

Language

(CIL)

Common Language Infrastructure(CLI)

JIT Compiler

1010001010001

0100010100100

Execution of Native code by Operating

System Service

Output Console/GUI

Common Language Runtime(CLR)

Source code

Byte code

Native code

Compile-time

Run-time

Figure 42 .NET compilation and execution process

80

Member Description

BuildTool The build tool(compiler or runtime) used in the build command

SourceInfo Information about the input source file

SourceText The source code supplied to the build tool

TargetInfo Information about the output file

TargetType The document type of the output file

Path The expanded file path of the build tool

Args The expanded arguments pass to the build tool

StartText Text displayed before the tool runs

FinishText Text displayed after the tool runs

Cancel Flag used to allow the command to be cancelled

CancelResult Result to be returned by the command in the event of the cancellation

SuccessCode Return code to determine successful completion of a build command

 Table 4 BuildCommand Class Member

81

Compile Event

Get srcInfo&

srcTxt

Doc(s) Saved? Save

srctxt has dep(s)

Get dep doc Type

.vb .xml .js .cs ……

Compile Dep(s)

Get source doc Type

.vb .xml .js .cs ……

Get BuildCommand

by C# specification

Yes

No

No

Yes

Output result

Compile Source file

Get BuildCommand

by C# specification

Execute Dll(s)

Get Build Tool for C#

Get Build Tool for C#

Figure 43 QuickSharp build process

Output Module

BuildTool Module

C# Language

Support Module

82

The Figure 43 demonstrates a QuickSharp build process workflow with C# source code.

Similar to other mainstream IDEs, while one or multiple documents are active, a

“Compile” event in QuickSharp can be triggered by one of following the main window

provided interactions: simply pressing keys with “Shift+F5”; clicking “Compile” under a

drop-down menu or clicking the corresponding button on the toolbar. As a preparation for

the actual build process, the BuildTool module then obtains a list of active documents

current open in the Scintilla editor. The information on currently active documents will be

saved in the BuildCommand class. This includes file path, file name, file type, document

time stamp and the file content. In addition, the BuildTool module can detect whether

there is any other dependent source file mentioned in the source text by the QuickSharp

build management mechanism(embedded options). If any dependencies exist in the same

directory as the input source file, the build process may compile the each dependency

conditionally if that file is out of date. Otherwise, the input file will be compiled directly.

The input file and dependencies use the same procedure calls to complete the build

process.

In QuickSharp, the IDE presents a multi-language support build environment. The

support for each available language is developed as a plugin that registers a

corresponding build command provider to the modular architecture IDE when it starts up.

In addition, some build tool configurations for a language could be created separately by

different build tool versions or both “Compile” and “Run” actions. A build tool is defined

by a specific configuration associated with the document type and current action. The

build command delegate representing an abstract tool retrieves a build command from a

provider supplied by a language support plugin which provides a method to create an

actual build-command. When the delegate is invoked, a specific build tool configuration

with its corresponding build command method allows it to be converted into a concrete

build-command for execution in the output console window. Figure 44 describes the

build-command invocation process for the C# language in brief.

83

Eventually, the Output module takes over the compilation process and executes the

completed build command. The compiler will run and present the results as well as the

error messages for syntax errors and warnings of the program if necessary in the output

window.

C# Support

BuildCommand

VB .NET Support

BuildCommand

Asp .NET Support

BuildCommand

JScript Support

BuildCommand

BuildCommand Delegate

C# configured Build Tool

Call back

BuildTool Module Language Support Modules

Figure 44 Concrete BuildCommand invocation process

84

6.1 Build-tool Replacement

The official QuickSharp IDE builds a C# program using the Microsoft .NET Framework

C# compiler and runtime on the Windows platform. PiSharp intends to make the

QuickSharp IDE run on Raspberry Pi(R-Pi) to compile and run XNA-like programs

written in the C# language. In the new system, the PiSharp will take advantage of Mono

Project components. Mono provides Mono version C# compilers and an implementation

of the CLI standard runtime. The intention of the Mono project is to allow developers to

build cross-platform C# applications(on Windows, Linux or other OS).

The Mono project also provides a Windows version of the Mono platform and

development tools. QuickSharp made an effort to be compatible with Mono. Once the

Mono components(in particular the compilers and run tool) are installed on a Windows

system, the Mono Language support module in QuickSharp will provide a default

configuration for them. As the Microsoft .NET Framework C# compilers and runtime do

not exist on any Linux distributions, in this case Raspbian, the Mono C# compilers and

run tool directly replace the default configurations of Microsoft C# build tools in PiSharp.

As described in the Mono background section above, “mcs.exe” represents the most

commonly used and functional compiler in current Mono versions so far. The instruction

expression of C# program compilation based on Mono compiler is:

mcs [option] [source files]

C# source files ends with a “.cs” extension.

Developers can pass one or more options to drive the compiler and it is possible to

compile multiple source files into one output file. Figure 45 and Figure 46 shows the code

for the default compiler and run tool configuration replacement as implemented in

PiSharp.

85

Windows Form Applications cannot be compiled directly by early versions of the Mono

C# compiler. This is because the Mono C# compiler only references three assemblies:

mscorlib.dll, System.dll and System.Xml.dll by default. Developers who want to refer to

more comprehensive libraries must manually specify them using the “-pkg” flag or the “-

r” flag, or a straightforward way is to use the “-pkg:dotnet” command line option to get

all the .NET base libraries immediately. This gives access to a set of libraries similar to

those commonly available on a Windows system for writing GUI programs. In particular,

it gives access to System.Windows.Form.dll. The current Hard-Float Mono version(4.5)

“mcs” compiler on Raspbian can refer System.Windows.Form library by default.

Quicksharp provides a flexible and convent system allowing developers customize build

tool configurations: such as a change to a new build tool or specifying an argument for a

build tool. The build tool system expands the configuration for build tool paths and

arguments by replacing template macro texts with instance actual values. Figure 47

presents the BuildTool option window layout and a Mono C# build tool configuration.

Figure 45 configuration of default compiler tool in PiSharp

Figure 46 configuration of default run tool in PiSharp

86

As shown above, a C# build tool argument described with macros is:

${DOTNET_TARGET} ${OUT_NAME} ${COMMON_OPT} ${EMBEDDED_OPT} “${SRC_FILE}”

 ${DOTNET_TARGET}: a tool specific macro for .NET compilation determines a

target output file type “.dll” or “.exe” by setting option flags: “/t:library” or

“/t:exe” respectively;

 ${OUT_NAME}: a target output file name;

 ${COMMON_OPT}: option flags for building;

 ${EMBEDDED_OPT}: options obtained from QuickSharp’s native features to

manage the build process embedded in source code;

 ${SRC_FILE}: source file name

The full collection of generic macros is listed in Appendix D. Using this system, add a “-

pkg:dotnet” flag will pass to the build tool configuration in place of the

${COMMON_OPT} macro in arguments.

Another command option used in this project is “-unsafe”. This command option is

required by the Pi-XNA project. As he mentioned, his test programs are trying to access

data in an array of a Vertex structures from the Main function. To achieve this goal,

Figure 47 BuildTool Setting Window

87

pointers are needed. An example is shown in Figure 48. Because pointers in C# programs

are considered to be unsafe code, the class also has to be declared as unsafe[15].So,

developers who are programming Pi-XNA code must add the “-unsafe” flag as a common

option manually to avoid failures in build processes(See in Figure 47).

Figure 48 C# code using unsafe pointer[15]

88

6.2 PiSharp Build Process Enhancements

As this thesis explained in Section 6.1, the QuickSharp IDE manages the build process

and develops programs by embedded options rather than using configuration files like

project files or solution files. This method provides a flexible modular structure. It is

helpful that a compiled program can be organized into a main program and a number of

libraries. This ensures that components in the modular structure project can be modified

or added without affecting the rest. However, QuickSharp does not provide a way of

assembling sets of source files into libraries. Instead, if a library structure is needed, it

will make a separate library for each source file. For graphic programming, this is not

ideal, because the number of source files can be large and loading many libraries leads to

slow program start-up. A goal of the PiSharp is to provide a better library system. This

section shows the development of the PiSharp build system.

Whist, it might be appropriate for professional developers to maintain a program

architecture by manually adding embedded options to source code, this could be

complicated and challenging work for beginners. For example, if a user builds from

Wang’s(2014) Pi-XNA sample program[38] with QuickSharp on a Raspberry Pi, all the

mathematics classes, graphic effects providers(developed in Wang’s project), and the

current program references have to be embedded into the source text by hand. Figure 49

demonstrates output of a 3D test program from Wang’s project: a rotating textured box

under a lighting system running Raspberry Pi. Figure 50 shows all relevant source files of

the rotating textured box program referenced in a source file to compile with the original

QuickSharp build system, and generate a “Program.exe” execuTable The compile options

can be assigned to the full path of C# file.

89

Without an IDE, users have to build a program in a command prompt manually allocating

a proper compiler, source files and all required references. The Build command auto-

completion(source files and libraries aspect) of QuickSharp requires them in compile

options. However, if the project contains a number of source files, manually defining each

source file is risky and inefficient.

In fact, an Pi-XNA C# program structure contains three main parts: A mathematical

component(XNA Mathematics Classes) consisting of Matrix, Vector2, Vector3, Vector4

classes to represent the fundamental needs of an XNA Framework, which supports

mathematical calculations for coordinate system transformation from a 3D virtual

environment to a 2D screen; Modules like GraphicsDevice, VertexPositionColor,

Figure 49 Rotating Textured Box under a Lighting System[38]

Figure 50 embedded compile options for “Rotating Texture Box” Program

Compile options

90

GameWindow, PrimitiveType represents graphics components(XNA graphics Classes).

They may require mathematical calculations to handle primitives(points, lines or

triangles) and provide 3D functionality; The custom program(XNA Program) developed

by application programmer creates concrete 3D objects and animations on the screen.

A Pi-XNA program class hierarchy is illustrated in Figure 51.

Apparently, QuickSharp’s build process is only suited to experienced developers who

want to maintain their project by themselves. Besides the difficulty of computer graphic

development, solving program architecture in a complex case could bring more problems

for beginners. In a complex program, compiling many of source files into multiple library

files is easy to maintain, and it may also reduce compile time during development. In

particular, the Pi-XNA program contains a number of math components and graphic

components which developer will not modify very often(do not have to recompile all files

every time, drawbacks: could be slow when program is running).

More importantly, in QuickSharp, dependent files can only be extracted from the current

input source file. Any dependent files which contain their own dependencies are ignored.

Obviously, specifying all the embedded options is not convenient to new programmers. In

particular, a large number of source files give a complex program. Managing a program

by the IDE itself could be a good idea for beginners, who can learn their program

architecture gradually.

Matrix, Vector2, Vector3, Vector4

Color, DepthFormat, Effect, Game, GameTime,

GameWindow, GraphicsDevice, GrahpicDeviceManager,

PrimitiveType, SurfaceFormat, VertexPositionColor,

VertexPositionNormalTexture

Program, Game1

Figure 51 Pi-XNA sample program class hierarchy

91

Therefore, this part is going to concentrate on build command completion for one or

multiple source documents situations. Considering this ported IDE on Raspberry Pi

toolkits is primarily for beginners, the PiSharp project intends to make the build process

easier for beginners. In a multiple source file project scenario, a compilation process

starts with an active source file. In the PiSharp, the build process is reorganized. The new

method traverses every C# source file in the current directory and detects which one

contains a “Main” program. The source file of compilation will be reset from the

currently active file to the Main program file. The process then adds appropriate

embedded options with referenced files’ names at the top of the Main program file copy

in the BuildCommand class. Therefore, the user will never see the embedded options.

As a result, PiSharp requires that developers create and place all their program source

files in the same directory. The build system combines file names with the current

directory to the valid full path of source files for the build tool configuration. Developers

can use the “WorkSpace” or “Explorer” window to manage which the current directory is

the build process working in.

In the compilation examples shown in this chapter, all source files for an XNA-like

program are in a single directory. This allows experimentation with Math and Graphic

source files. The system does allow a “closed” build of the “XNA libraries, by keeping

their source code in a separate directory, and building one or more libraries that could be

referenced with the “-pkg” flag from a single program. As development of the graphics

library is ongoing, the option to efficiently modify the library in PiSharp is very

convenient, and serves here to illustrate the flexibility of the build system.

The goal of PiSharp build system is to make the entire build processes into one

instruction from the user. The optimization considered four different situations:

1. If the current input source file’s content has any embedded compile option or

dependency option, PiSharp assumes that the developer expects to maintain the

program structure by him/her-self. This feature is as established by the

92

QuickSharp group, thus keeps it alive for initial purposes;

2. If the program is light-weight(less than 10 source files in total) or read source file

uses the same namespace, PiSharp will auto complete the compile options and

compile all the source files in the current working directory into a single

executable file(assuming that all C# files in the working directory are part of the

program);

3. If the program has relatively complicated structure(more than or equal to 10

source file in total, and has any underlying relationship in the project), PiSharp

will reorganize the build processes order for each dependency and the program’s

main body compilations. The program will generate all corresponding libraries

and an executable file at once. The PiSharp build process regards the source files

in the current working directory that have the same namespace as an individual

library for the part of the condition definition;

4. If a “*.csproj” project file exists in the current opening folder, PiSharp prefers to

build with the project file.

As part of this process, PiSharp adds an extra flag to set “compileProcessStatus” for

BuildCommand functions(in all build command delegate, invocations, and all language

providers methods) as a condition to identify the status of the current build process: the

process is using the original build process; the process is using the PiSharp build process

trying to generate an executable file; the process is using the PiSharp build process but

trying to build a library. In the situation of the program having relatively complicated

structure, the build process could use both “build exe” and “build dll” flags if the project

does have a Main function for the entry point.

6.2.1. Build Process of Light-Weight Programs

A user may work on any source file while developing a program, not necessarily the one

that contains the Main method. However, when the user starts to build and run the output

executable program(.exe file), a library result might instead because the QuickSharp build

93

process determines to compile a source file into an executable program or a library

according to the input file content. If the source code contains a valid Main procedure,

then an executable program will be created. Otherwise, a library will be the result. The

QuickSharp solution is to fix a source file that the build command starts with. Figure 52

illustrates QuickSharp “pins” a source file for building. To do this, the user has to specify

the source file with a Main function on the toolbar, with the two restrictions that the Main

source file was already active in the QuickSharp editor window before compilation was

requested, and that the other relevant files are specified in the Main source code file.

To simplify this, when the total number of source files is fewer than 10 or all source files

are under a same namespace, the new PiSharp build process can start with any active

source file in the IDE editor. It finds the source file with a Main function in the working

directory and copies the Main program file’s information and content(if the file exists) to

the build command. Then it extracts all the other source file names in the same directory

and embeds references to them as a series of compile options into the Main program’s

source text. The “source text” is a temporary string stored in memory as a part of the

build command structure, which the C# language build tool can compile with, so that

PiSharp build process will never change the actual source file content. Figure 53

demonstrates an example that a build process starting with a file “Class2.cs” currently

active in the text editor. The build process compiles the “Main.cs” as the source file,

associated with “Class1.cs”, “Class2.cs” and “Class3.cs” files to generate a executable

“Main.exe”. A “/out:” option is used to specify the target file name. If there is no file with

a Main program, PiSharp will build a library for instead, using the namespace as its name

or “Program” if no namespace is used.

Figure 52 QuickSharp “pins” a source file for building

94

Text embedded into Main.cs file is:

//$/out:Main.exe

//$ Class1.cs Class2.cs Class3.cs

The resulting build command will be:

mcs.exe /out:Main.exe Class1.cs Class2.cs Class3.cs “Main.cs”

This method will execute a single output file but recompile every source file. The other

features such as runtime options, build task, resource, icon and “runinownwindow” as

embedded options are retained for customization by the users because those options may

still be of value.

6.2.2. Build Library for Complex Program Structure

QuickSharp prefers to compile each single source file to an individual library. However,

that brings difficulty not only to programmers but also to the system, when the number of

source files is large. It slows the program launch-in that the program has to retrieve and

load all the libraries separately. Therefore, PiSharp modified this build system to make a

proper library facility.

In some case, especially graphic programming, the project may consist of a large number

Main.

cs

Class1

.cs

Class2

.cs

Class3

.cs

Image

.bmp

Text.

txt

Input doc

ProjectFolder
Main.

exe

Figure 53 PiSharp build process in a working directory

95

of source files or be based on functional underlying assemblies(like mathematical or

graphical providers). To avoid a long compilation time for each build action, the

optimization plan is to compile those source files into a set of library files, which

programmers will probably not change frequently. If total number of source files is more

than 10 and the total files’ namespaces number is greater than or equals 2(source files

which have no namespace defined will have “Program” set as their namespace by the

build process), the PiSharp compilation process will generate a library file for each sub-

project based on their own namespace except for sub-project involved the Main program

file. In brief, except for the project contains Main program file, the rest of the source files

will be compiled into library files based on namespaces.

Figure 54 describes the structure of a simulated XNA-like program that satisfies the build

libraries condition, which is complex enough to explain the entire PiSharp build process.

From Figure 54 and Table 5, the total 11 source files are divided into six parts:

Matrix.cs,Vector2.cs Vector3.cs and Vector4.cs constitute the fundamental mathematics

part; Graphic.cs references the mathematics assembly; Line.cs and Point.cs requires the

Graphic component. Triangle.cs references both mathematics and elements; Cube.cs is

based on Triangle.cs; Program.cs and Game1.cs program are built on top of mathematics

and Cube object class.

Source files NameSpace Assemblies Referenced

Matrix.cs,Vector2.cs

Vector3.cs, Vector4.cs

Math

Graphic.cs GraphicComponents Math.dll

Line.cs, Point.cs GraphicElement GraphicComponents.dll

Triangle.cs ObjectBase GraphicElement.dll, Math.dll

Cube.cs Object ObjectBase.dll

Program.cs, Game1.cs Game Object, Math.dll

 Table 5 Sample Program Relationships

96

A target file only can be executed if its required references exist. In this sample program

the expected build process sequence is:

1. Compile: Matrix.cs, Vector2.cs, Vector3.cs, Vector4.cs into “Math.dll”;

2. Compile: Graphic.cs associated with “Math.dll” into “GraphicComponents.dll”;

3. Compile: Line.cs, Point.cs associated with “GraphicComponents.dll” into

“GraphicElement.dll”;

4. Compile: Triangle.cs associated with “GraphicElement.dll” and “Math.dll” into

“ObjectBase.dll”;

5. Compile: Cube.cs associated with “ObjectBase.dll” into “Object.dll”;

6. Compile: Program.cs Game1.cs associated with “Object.dll” and “Math.dll” into

“Game.exe”.

Matrix.cs, Vector2.cs, Vector3.cs, Vector4.cs

Line.cs, Point.cs

Triangle.cs

Cube.cs

Program.cs, Game1.cs

Graphics.cs

Game.cs

Figure 54 a sample program for testing PiSharp build process

97

Therefore, the subproject involves Main program does not have to be organized because it

always build in the last.

To implement the goal of the PiSharp build process reorganization, the first step is to

classify all the source files based on their namespaces. In order to group source files, a

more detailed file information class is required than that used in QuickSharp. In PiSharp,

the class is called “FileDetail” which involves the entire content of “FileInfo”, in addition

to FileText, Namespace and used Assemblies for the further group and sort method, and

requiring all external libraries to be mentioned. Figure 55 shows the method of extracting

the namespace from the source code, a parser was written by using clauses. It uses regular

expression to match text formed as “namespace *”. The “\s” and “\w” respectively

represent whitespace and word character.

The PiSharp uses a Language-Integrated Query(LINQ) “GroupBy” operator to take a

collection of all dependencies with detail information as inputs, and group dependencies

based on the namespaces. LINQ is part of the Microsoft .NET Framework 3.5 library

system to make SQL-like facilities available in source code.

The “GroupBy” expression in this case is:

var groupedDeps= depfilesList.GroupBy(

fDetail => fDetail.NameSpace).Select(group =>group.ToList)

Figure 55 Get Namespace method

98

Then the process has a set of grouped but unordered dependency lists based on

namespaces. After that, add assembly library file information(if it exists) at the end of

each list following the detail from Figure 54 and Table 5 to form the compilation

requirement lists.

Generally, a build process determinates whether the list of source files needs to be

compiled depended on two conditions:

1. “all the referenced libraries are up to date”:

No any referenced library/Each referenced library exists and its last modified time

is greater than all its source files last modified time;

2. “the target file execution is required”: the target file does not exist or its last

modified time less than its source files last modified time.

The PiSharp build process sorts the order by comparing all lists from the groups with a

List<T>.Sort(IComparer<T>) Method but customize the comparison rule with:

If the first input list satisfies both conditions but the other does not, the first one will stay

in the front of the second one and vice versa, else they both keep their position. This

ensures only one list can acquire the priority of compilation. Figure 56 and Figure 57

show the Compare method of sorting lists of files.

Line.cs

Point.cs

Vector4.cs

Matrix.cs

Vector3.cs

Vector2.cs

Graphics.cs Triangle.cs Cube.cs

GraphicCo

mponents.

dll

ObjectBase

.dll

Math.dll

GraphicEle

ment.dll

Math.dll

Figure 56 Form and Sort Compilation Requirement Lists

99

The result of the sort is to identify a library to compile first. It is not possible to

completely compile entire the program at this stage because of the structure

QuickSharp(retained in PiSharp). The sorting and complication planning is done in the C#

language module and can only pass back one compilation command to the Build module

at a time. Therefore, the idea is to make a loop to keep sorting after the first list from the

group gets compiled. Figure 58 illustrates the PiSharp build library process. A new

delegate is created in BuildTool module so that the process can get a sorted compilation

requirement from the C# language support module after invocation. The process takes the

first list from the group to build a library. After this, the Output module accomplishes the

compile procedure and outputs result for this library. Then the process removes the first

list and updates the rest of files information. This ensures that all files’ last modified times

are updated correctly. If necessary, the next list of files is compiled. Eventually, the build

process will turn to compile the Main project and generate the executable file with all

supplied libraries.

Figure 57 Compare Method of Sorting

100

BuildTool Module C#Language Support Module

GetBuildCommand C#CompileCommand

CompileAndOutput

Figure 58 organized PiSharp build library process

set of Lists is null?

GetFirstList&Firstfile

RemovetheFirstList

Compile “Main”

Yes

No

Update all File Info

SortedCompileRequiries GetCompileRequiries

SortedCompileRequiries GetCurrentRequirements

101

Figure 59 shows the output statement of the entire PiSharp build command process in a

correct sequence and finally generating the expected libraries and an executable file.

To compile a Wang’s(2014) Pi-XNA sample program[38] – “JBBR cube5 intermediate

lighting texture” program – Matrix, Vector2, Vector3, Vector4 are mathematical classes

under “JBBERXG11V2Math” namespace, other graphics components classes are under

“JBBERXG11V2” namespace. The user’s XNA-like program is under the “TestGame”

namespace. As a consequence, the expected build order is:

1. Build “JBBERXG11V2Math.dll”;

2. Build “JBBERXG11V2.dll”;

3. Build “TestGame.exe”;

The complete output statements are shown in PiSharp’s Output window within Figure 60.

Figure 59 output window of PiSharp build process

Figure 60 JBBER cube5 program build process in PiSharp

102

A “Screenshot” application on Linux distributions cannot capture the graphic running

displaying on screen. Therefore, a photograph of running “JBBR cube 5” program

through PiSharp IDE is shown in Figure 61 for instead. As a result, the reorganized build

process in PiSharp is capable of developing complex XNA-like programs.

Wang’s programs contain a number of printing-line statements in order to track the Pi-

XNA program workflow. While the Pi-XNA Program is running, a single writing-text

procedure can be called tens or hundreds of times. Unlike running with a command

terminal, PiSharp is based on windowing system that relies on Window Message system.

When the program is displaying graphics, the IDE window stops processing messages

and cannot respond. It means that no text will be shown in the output window during

graphics is displaying on screen. Considering the performance of Raspberry Pi, in the

Wang’s(2014) “JBBR cube5 intermediate lighting texture” program[38], which mainly

used during PiSharp project development, most write text calls have been commented out

to avoid excessive data forward to the output stream in a short time. The window has to

frequently repaint itself, which might lead the IDE to crash.

Figure 61 running Pi-XNA program via PiSharp

103

6.2.3. Build Program from a Project File

As far as Visual Studio project is concerned, PiSharp users would prefer to develop and

run sample programs that has been premade or precompiled on a Windows platform. The

basic idea is to traverse every file in the current working directory and detect if a

“*.csproj” project file exists. Then the build command is configured in a project language

support module rather than C# module. It assigned with a “xbuild” compiler which

commonly used for C# project on Mono platform. The output statement of build

IDEUISample project is shown in Figure 62.

Users can create a new “Run” tool for the project by using mono.exe runtime in PiSharp

buildtool setting window. The output path and other common options can be customized.

However, any windowing project is not recommended to run with PiSharp which conflict

with the GTK-based Scintilla text editor that will lead to “not respond”.

Figure 62 build project with “xbuild” compiler

104

Chapter 7. Auto-Completion(IntelliSense)

Code auto-completion brings significant advantages for developers. It makes

programming efficient and reduces typing errors. Code completion is implemented in

PiSharp. Managing pop up window caused a number of issues which have been discussed

in Chapter 5. PiSharp project improved in filtering all loaded classes, members,

namespaces, by type-in letters. For instance, a user just has type three letters: “con”, then

the lookup pop- up form shows possible completions. Note that it finds all matches with

the letter sequence, not just matches with the letters at the start.

The following the screenshot Figure 63 shows Code Auto-completion in PiSharp system.

QuickSharp was capable of providing interactive source level debugging. The Scintilla

library is capable of supporting such debugging. However, this has not yet built into

PiSharp.

Figure 63 code Auto-completion in PiSharp

user input

105

Chapter 8. Conclusion and Future Work

The intended use of the PiSharp project is to make an ease for beginners developing a

XNA-like program on a Raspberry-Pi. Eventually, we achieve our goals. PiSharp is

capable of:

1. Managing and navigating a directory of source files

2. Display a file in a code text editor

3. Display code with syntax highlight

4. Automatically discovering program library structure from code namespaces

5. Compiling libraries and programs automatically with recompilation avoided if

source code has not been updated

6. Compiling and running from the IDE with reorganized build system

7. Editing more than one file at a time through GTK+ environment

8. Providing code compilation for global and local names of variables, methods and

classes.

The automated build system has been tested on a 3D graphics and mathematics system

and allows simple XNA-like programs in a single source file to generate animated 3D

images. It requires little specialist knowledge to use and so should be suitable for novice

programmers. PiSharp runs on the Raspberry Pi and can compile and run simple graphics

programs in approximately 10 seconds. It brings the world of convenient automated

programming to the small Raspberry Pi system.

Future work

There are two important ways which the current PiSharp system is incomplete. The first is

that the editor window does not properly dock with the main IDE window. Instead,

PiSharp text editors present as float windows. The system is usable but it would be

helpful to fix this problem. It will be difficult to fix.

The second incompleteness is debugging. As Scintilla has supporting features this should

be possible, and is the highest priority for further work.

106

Appendix A

Mono Installation Instructions

To run the code in this project, it is necessary to install Mono components – the open source

implementation of .NET Framework for C#. At the time of writing, there was an issue with

Mono on the Raspberry Pi – it had errors in handling hardware floating point. Instead of using

the standard version of Mono, therefore, code from an experimental branch of the Mono

project in which the floating point handling had been repaired was used.

The Method of Mono Hard-Float component installation is from Danson’s (2013) blog[39]:

1. Launch a command terminal window and ensure Raspbian system is fully up to date:

2. Install a bunch of dependencies:

3. Download and install the latest version of Mono from apt source

4. Download a GitHub newest version of Mono components

5. Once the clone is complete then move into the mono directory

6. Switch Mono project source from latest version to 3.12.0-hotfix. The Mono 4.0.0 or later

version requires Mono 3.8.0 or later version to build “mcs” compiler. However, the apt source

only provides a Mono 3.2.8 version, which means the GitHub Mono 4.0.0 or later version is

not able to be installed.

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install mono-complete

sudo apt-get install gettext build-essential git-core automake libtool libglib2.0-dev

cd mono

sudo git clone git://github.com/mono/mono.git

sudo git checkout mono-3.12.0-tls-hotfix

sudo git submodule init

sudo git submodule update

107

7. Run an auto-generating script to ensure the configuration of make is correct

8. Use “make” command to compile

9. Ignore the errors and warnings, then “make install”

10. Should be able to see the current version of Mono that is running on R-Pi after

installation.

Figure 64 shows display the current Mono version runs on Raspbian.

Figure 64 Mono version: 3.12.0-tls-hoxfix

sudo make

sudo ./autogen.sh --prefix=/usr/local --enable-nls=no

sudo make install

mono --version

108

For Raspberry Pi Model B or B+ with ARMv6 architecture,

commands:

Note: For the first time running QuickSharp IDE with mono, a root command may be

required to access the given key.

cd ~

https://dl.dropboxusercontent.com/u/98507800/s-config/mono_2_11_4_armv6hf_binary.tgz

cd /

sudo tar zxvf ./mono_2_11_4_armv6hf_binary.tgz

sudo ldconfig

sudo apt-get install libgdiplus

109

Appendix B

MoMA Scan Results

 Assembly Version Missing
Not

Implemented
Todo P/Invoke

ICSharpCode.SharpZLib.dll 0.86.0.518 0 0 0 0

QuickSharp.BuildTools.dll 2.0.0.26942 0 0 0 0

QuickSharp.Cassini.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.AspNet.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.CSharp.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.DotNet.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.Html.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.JScript.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.MSSCE.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.MSSql.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.MySQL.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.ObjectBrowser.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.Sql.dll 2.0.0.26942 0 0 0 0

QuickSharp.CodeAssist.SQLite.dll 2.0.0.26942 0 0 0 0

110

QuickSharp.Core.dll 2.0.0.26942 0 0 3 3

Calling Method Method with [MonoTodo] Reason

ToolStripMenuItem

GetMenuItemByName

(string)

ToolStripItem[] ToolStripItemCollection.Find (string, bool)
searchAllChildren

parameter isn't used

void LoadSingleToolStrip () void ToolStripPanel.Join (ToolStrip) Not implemented

void LoadMultipleToolStrips

()
void ToolStripPanel.Join (ToolStrip, int) Not implemented

Calling Method P/Invoke Method P/Invoke Library

void SetScheme ()
int DisplayInformation.GetCurrentThemeName (StringBuilder, int,

StringBuilder, int, StringBuilder, int)
uxtheme.dll

void SetScheme ()
int VS2008ColorTable/DisplayInformation.GetCurrentThemeName

(StringBuilder, int, StringBuilder, int, StringBuilder, int)
uxtheme.dll

void DeleteWithUndo

(string)
int FileTools.SHFileOperation (FileTools/SHFILEOPSTRUCT&) shell32.dll

QuickSharp.DocumentTemplates.dll 2.0.0.26942 0 0 0 0

QuickSharp.Editor.dll 2.0.0.26942 0 0 0 0

QuickSharp.Explorer.dll 2.0.0.26942 0 0 0 0

QuickSharp.FindInFiles.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.AspNet.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.CSharp.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Dbml.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Html.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.JScript.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Mono.dll 2.0.0.26942 0 0 0 0

111

QuickSharp.Language.MSIL.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Proj.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Resx.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.VBNet.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Wsdl.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Xml.dll 2.0.0.26942 0 0 0 0

QuickSharp.Language.Xsd.dll 2.0.0.26942 0 0 0 0

QuickSharp.Output.dll 2.0.0.26942 0 0 1 0

Calling Method Method with [MonoTodo] Reason

void .ctor (string) void Control.set_CheckForIllegalCrossThreadCalls (bool) Stub, value is not used

QuickSharp.Persistence.SQLite.dll 2.0.0.26942 0 0 0 0

QuickSharp.SDKTools.dll 2.0.0.26942 0 0 0 0

QuickSharp.SqlEditor.dll 2.0.0.26942 0 0 0 0

QuickSharp.SQLiteManager.dll 2.0.0.26942 0 0 0 0

QuickSharp.SqlManager.dll 2.0.0.26942 0 0 0 0

QuickSharp.TextEditor.dll 2.0.0.26942 0 0 0 0

QuickSharp.Tools.dll 2.0.0.26942 0 0 0 0

QuickSharp.Workspace.dll 2.0.0.26942 0 0 0 0

ScintillaNet.dll 2.0.5372.27148 0 0 1 7

112

Calling Method Method with [MonoTodo] Reason

bool Print (bool) void PrintDialog.set_UseEXDialog (bool)
Stub, not implemented, will always use

default dialog

Calling Method P/Invoke Method P/Invoke Library

void WndProc (Message&) IntPtr NativeMethods.SetParent (IntPtr, IntPtr) user32.dll

void WndProc (Message&)
bool NativeMethods.GetUpdateRect (IntPtr,

RECT&, bool)
user32.dll

CreateParams

get_CreateParams ()
IntPtr NativeMethods.LoadLibrary (string) kernel32

void set_AllowDrop (bool) void NativeMethods.DragAcceptFiles (IntPtr, bool) shell32.dll

void handleFileDrop (IntPtr)
int NativeMethods.DragQueryFileA (IntPtr, uint,

IntPtr, int)
shell32.dll

void handleFileDrop (IntPtr)
int NativeMethods.DragQueryFileA (IntPtr, uint,

IntPtr, int)
shell32.dll

void handleFileDrop (IntPtr) int NativeMethods.DragFinish (IntPtr) shell32.dll

System.Data.SQLite.dll 1.0.66.0 0 8 3 81

Calling Method Method that Throws NotImplementedException

void Initialize (string) void DbConnectionStringBuilder.GetProperties (Hashtable)

DataTable GetSchema () DataTable DbConnection.GetSchema (string, String[])

DataTable GetSchema (string) DataTable DbConnection.GetSchema (string, String[])

DataTable GetSchemaTable

(bool, bool)
DataTable DbConnection.GetSchema (string, String[])

DataTable GetSchemaTable

(bool, bool)
DataTable DbConnection.GetSchema (string, String[])

void .ctor (SQLiteDataReader,

SQLiteStatement)
DataTable DbConnection.GetSchema (string, String[])

void .ctor (SQLiteDataReader,

SQLiteStatement)
DataTable DbConnection.GetSchema (string, String[])

void .ctor (SQLiteDataReader,

SQLiteStatement)
DataTable DbConnection.GetSchema (string, String[])

Calling Method Method with [MonoTodo] Reason

void Initialize (string) void DbConnectionStringBuilder.GetProperties (Hashtable)

113

void Prepare

(PreparingEnlistment)
void PreparingEnlistment.Prepared ()

void .ctor (Transaction)
Enlistment Transaction.EnlistVolatile (IEnlistmentNotification,

EnlistmentOptions)

EnlistmentOptions being

ignored

Calling Method P/Invoke Method P/Invoke Library

string SQLiteLastError

(SQLiteConnectionHandle)
IntPtr UnsafeNativeMethods.sqlite3_errmsg_interop (IntPtr, Int32&) System.Data.SQLite.DLL

void FinalizeStatement

(SQLiteStatementHandle)
int UnsafeNativeMethods.sqlite3_finalize_interop (IntPtr) System.Data.SQLite.DLL

void CloseConnection

(SQLiteConnectionHandle)
int UnsafeNativeMethods.sqlite3_close_interop (IntPtr) System.Data.SQLite.DLL

void ResetConnection

(SQLiteConnectionHandle)
IntPtr UnsafeNativeMethods.sqlite3_next_stmt (IntPtr, IntPtr) System.Data.SQLite.DLL

void ResetConnection

(SQLiteConnectionHandle)
int UnsafeNativeMethods.sqlite3_reset_interop (IntPtr) System.Data.SQLite.DLL

void ResetConnection

(SQLiteConnectionHandle)

int UnsafeNativeMethods.sqlite3_exec (IntPtr, Byte[], IntPtr, IntPtr,

IntPtr&)
System.Data.SQLite.DLL

bool IsAutocommit

(SQLiteConnectionHandle)
int UnsafeNativeMethods.sqlite3_get_autocommit (IntPtr) System.Data.SQLite.DLL

void Cancel () void UnsafeNativeMethods.sqlite3_interrupt (IntPtr) System.Data.SQLite.DLL

string get_SQLiteVersion () IntPtr UnsafeNativeMethods.sqlite3_libversion () System.Data.SQLite.DLL

int get_Changes () int UnsafeNativeMethods.sqlite3_changes (IntPtr) System.Data.SQLite.DLL

void Open (string,

SQLiteOpenFlagsEnum, int,

bool)

int UnsafeNativeMethods.sqlite3_open_interop (Byte[], int, IntPtr&) System.Data.SQLite.DLL

void SetTimeout (int) int UnsafeNativeMethods.sqlite3_busy_timeout (IntPtr, int) System.Data.SQLite.DLL

bool Step (SQLiteStatement) int UnsafeNativeMethods.sqlite3_step (IntPtr) System.Data.SQLite.DLL

int Reset (SQLiteStatement) int UnsafeNativeMethods.sqlite3_reset_interop (IntPtr) System.Data.SQLite.DLL

SQLiteStatement Prepare

(DbCommandBuilder), string,

SQLiteStatement, uint, String&)

int UnsafeNativeMethods.sqlite3_prepare_interop (IntPtr, IntPtr, int,

IntPtr&, IntPtr&, Int32&)
System.Data.SQLite.DLL

void Bind_Double

(SQLiteStatement, int, double)
int UnsafeNativeMethods.sqlite3_bind_double (IntPtr, int, double) System.Data.SQLite.DLL

void Bind_Int32

(SQLiteStatement, int, int)
int UnsafeNativeMethods.sqlite3_bind_int (IntPtr, int, int) System.Data.SQLite.DLL

114

void Bind_Int64

(SQLiteStatement, int, Int64)
int UnsafeNativeMethods.sqlite3_bind_int64 (IntPtr, int, Int64) System.Data.SQLite.DLL

void Bind_Text

(SQLiteStatement, int, string)

int UnsafeNativeMethods.sqlite3_bind_text (IntPtr, int, Byte[], int,

IntPtr)
System.Data.SQLite.DLL

void Bind_DateTime

(SQLiteStatement, int,

DateTime)

int UnsafeNativeMethods.sqlite3_bind_text (IntPtr, int, Byte[], int,

IntPtr)
System.Data.SQLite.DLL

void Bind_Blob

(SQLiteStatement, int, Byte[])

int UnsafeNativeMethods.sqlite3_bind_blob (IntPtr, int, Byte[], int,

IntPtr)
System.Data.SQLite.DLL

void Bind_Null

(SQLiteStatement, int)
int UnsafeNativeMethods.sqlite3_bind_null (IntPtr, int) System.Data.SQLite.DLL

int Bind_ParamCount

(SQLiteStatement)
int UnsafeNativeMethods.sqlite3_bind_parameter_count (IntPtr) System.Data.SQLite.DLL

string Bind_ParamName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_bind_parameter_name_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

int Bind_ParamIndex

(SQLiteStatement, string)

int UnsafeNativeMethods.sqlite3_bind_parameter_index (IntPtr,

Byte[])
System.Data.SQLite.DLL

int ColumnCount

(SQLiteStatement)
int UnsafeNativeMethods.sqlite3_column_count (IntPtr) System.Data.SQLite.DLL

string ColumnName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_name_interop (IntPtr,

int, Int32&)
System.Data.SQLite.DLL

TypeAffinity ColumnAffinity

(SQLiteStatement, int)
TypeAffinity UnsafeNativeMethods.sqlite3_column_type (IntPtr, int) System.Data.SQLite.DLL

string ColumnType

(SQLiteStatement, int,

TypeAffinity&)

IntPtr UnsafeNativeMethods.sqlite3_column_decltype_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

string ColumnOriginalName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_origin_name_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

string ColumnDatabaseName

(SQLiteStatement, int)

IntPtr

UnsafeNativeMethods.sqlite3_column_database_name_interop

(IntPtr, int, Int32&)

System.Data.SQLite.DLL

string ColumnTableName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_table_name_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

void ColumnMetaData (string,

string, string, String&, String&,

Boolean&, Boolean&,

Boolean&)

int UnsafeNativeMethods.sqlite3_table_column_metadata_interop

(IntPtr, Byte[], Byte[], Byte[], IntPtr&, IntPtr&, Int32&, Int32&,

Int32&, Int32&, Int32&)

System.Data.SQLite.DLL

115

double GetDouble

(SQLiteStatement, int)
double UnsafeNativeMethods.sqlite3_column_double (IntPtr, int) System.Data.SQLite.DLL

int GetInt32 (SQLiteStatement,

int)
int UnsafeNativeMethods.sqlite3_column_int (IntPtr, int) System.Data.SQLite.DLL

Int64 GetInt64

(SQLiteStatement, int)
Int64 UnsafeNativeMethods.sqlite3_column_int64 (IntPtr, int) System.Data.SQLite.DLL

string GetText (SQLiteStatement,

int)

IntPtr UnsafeNativeMethods.sqlite3_column_text_interop (IntPtr,

int, Int32&)
System.Data.SQLite.DLL

DateTime GetDateTime

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_text_interop (IntPtr,

int, Int32&)
System.Data.SQLite.DLL

Int64 GetBytes

(SQLiteStatement, int, int,

Byte[], int, int)

int UnsafeNativeMethods.sqlite3_column_bytes (IntPtr, int) System.Data.SQLite.DLL

Int64 GetBytes

(SQLiteStatement, int, int,

Byte[], int, int)

IntPtr UnsafeNativeMethods.sqlite3_column_blob (IntPtr, int) System.Data.SQLite.DLL

int AggregateCount (IntPtr) int UnsafeNativeMethods.sqlite3_aggregate_count (IntPtr) System.Data.SQLite.DLL

void CreateFunction (string, int,

bool, SQLiteCallback,

SQLiteCallback,

SQLiteFinalCallback)

int UnsafeNativeMethods.sqlite3_create_function_interop (IntPtr,

Byte[], int, int, IntPtr, SQLiteCallback, SQLiteCallback,

SQLiteFinalCallback, int)

System.Data.SQLite.DLL

void CreateFunction (string, int,

bool, SQLiteCallback,

SQLiteCallback,

SQLiteFinalCallback)

int UnsafeNativeMethods.sqlite3_create_function_interop (IntPtr,

Byte[], int, int, IntPtr, SQLiteCallback, SQLiteCallback,

SQLiteFinalCallback, int)

System.Data.SQLite.DLL

void CreateCollation (string,

SQLiteCollation,

SQLiteCollation)

int UnsafeNativeMethods.sqlite3_create_collation (IntPtr, Byte[], int,

IntPtr, SQLiteCollation)
System.Data.SQLite.DLL

void CreateCollation (string,

SQLiteCollation,

SQLiteCollation)

int UnsafeNativeMethods.sqlite3_create_collation (IntPtr, Byte[], int,

IntPtr, SQLiteCollation)
System.Data.SQLite.DLL

int ContextCollateCompare

(CollationEncodingEnum, IntPtr,

string, string)

int UnsafeNativeMethods.sqlite3_context_collcompare (IntPtr,

Byte[], int, Byte[], int)
System.Data.SQLite.DLL

int ContextCollateCompare

(CollationEncodingEnum, IntPtr,

Char[], Char[])

int UnsafeNativeMethods.sqlite3_context_collcompare (IntPtr,

Byte[], int, Byte[], int)
System.Data.SQLite.DLL

CollationSequence

GetCollationSequence

IntPtr UnsafeNativeMethods.sqlite3_context_collseq (IntPtr, Int32&,

Int32&, Int32&)
System.Data.SQLite.DLL

116

(SQLiteFunction, IntPtr)

Int64 GetParamValueBytes

(IntPtr, int, Byte[], int, int)
int UnsafeNativeMethods.sqlite3_value_bytes (IntPtr) System.Data.SQLite.DLL

Int64 GetParamValueBytes

(IntPtr, int, Byte[], int, int)
IntPtr UnsafeNativeMethods.sqlite3_value_blob (IntPtr) System.Data.SQLite.DLL

double GetParamValueDouble

(IntPtr)
double UnsafeNativeMethods.sqlite3_value_double (IntPtr) System.Data.SQLite.DLL

int GetParamValueInt32 (IntPtr) int UnsafeNativeMethods.sqlite3_value_int (IntPtr) System.Data.SQLite.DLL

Int64 GetParamValueInt64

(IntPtr)
Int64 UnsafeNativeMethods.sqlite3_value_int64 (IntPtr) System.Data.SQLite.DLL

string GetParamValueText

(IntPtr)

IntPtr UnsafeNativeMethods.sqlite3_value_text_interop (IntPtr,

Int32&)
System.Data.SQLite.DLL

TypeAffinity

GetParamValueType (IntPtr)
TypeAffinity UnsafeNativeMethods.sqlite3_value_type (IntPtr) System.Data.SQLite.DLL

void ReturnBlob (IntPtr, Byte[])
void UnsafeNativeMethods.sqlite3_result_blob (IntPtr, Byte[], int,

IntPtr)
System.Data.SQLite.DLL

void ReturnDouble (IntPtr,

double)
void UnsafeNativeMethods.sqlite3_result_double (IntPtr, double) System.Data.SQLite.DLL

void ReturnError (IntPtr, string) void UnsafeNativeMethods.sqlite3_result_error (IntPtr, Byte[], int) System.Data.SQLite.DLL

void ReturnInt32 (IntPtr, int) void UnsafeNativeMethods.sqlite3_result_int (IntPtr, int) System.Data.SQLite.DLL

void ReturnInt64 (IntPtr, Int64) void UnsafeNativeMethods.sqlite3_result_int64 (IntPtr, Int64) System.Data.SQLite.DLL

void ReturnNull (IntPtr) void UnsafeNativeMethods.sqlite3_result_null (IntPtr) System.Data.SQLite.DLL

void ReturnText (IntPtr, string)
void UnsafeNativeMethods.sqlite3_result_text (IntPtr, Byte[], int,

IntPtr)
System.Data.SQLite.DLL

IntPtr AggregateContext (IntPtr) IntPtr UnsafeNativeMethods.sqlite3_aggregate_context (IntPtr, int) System.Data.SQLite.DLL

void SetPassword (Byte[]) int UnsafeNativeMethods.sqlite3_key (IntPtr, Byte[], int) System.Data.SQLite.DLL

void ChangePassword (Byte[]) int UnsafeNativeMethods.sqlite3_rekey (IntPtr, Byte[], int) System.Data.SQLite.DLL

void SetUpdateHook

(SQLiteUpdateCallback)

IntPtr UnsafeNativeMethods.sqlite3_update_hook (IntPtr,

SQLiteUpdateCallback, IntPtr)
System.Data.SQLite.DLL

void SetCommitHook

(SQLiteCommitCallback)

IntPtr UnsafeNativeMethods.sqlite3_commit_hook (IntPtr,

SQLiteCommitCallback, IntPtr)
System.Data.SQLite.DLL

void SetRollbackHook

(SQLiteRollbackCallback)

IntPtr UnsafeNativeMethods.sqlite3_rollback_hook (IntPtr,

SQLiteRollbackCallback, IntPtr)
System.Data.SQLite.DLL

117

int GetCursorForTable

(SQLiteStatement, int, int)
int UnsafeNativeMethods.sqlite3_table_cursor (IntPtr, int, int) System.Data.SQLite.DLL

Int64 GetRowIdForCursor

(SQLiteStatement, int)
int UnsafeNativeMethods.sqlite3_cursor_rowid (IntPtr, int, Int64&) System.Data.SQLite.DLL

void

GetIndexColumnExtendedInfo

(string, string, string, Int32&,

Int32&, String&)

int UnsafeNativeMethods.sqlite3_index_column_info_interop

(IntPtr, Byte[], Byte[], Byte[], Int32&, Int32&, IntPtr&, Int32&)
System.Data.SQLite.DLL

void Open (string,

SQLiteOpenFlagsEnum, int,

bool)

int UnsafeNativeMethods.sqlite3_open16_interop (Byte[], int,

IntPtr&)
System.Data.SQLite.DLL

void Bind_Text

(SQLiteStatement, int, string)

int UnsafeNativeMethods.sqlite3_bind_text16 (IntPtr, int, string, int,

IntPtr)
System.Data.SQLite.DLL

string ColumnName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_name16_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

string GetText (SQLiteStatement,

int)

IntPtr UnsafeNativeMethods.sqlite3_column_text16_interop (IntPtr,

int, Int32&)
System.Data.SQLite.DLL

string ColumnOriginalName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_origin_name16_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

string ColumnDatabaseName

(SQLiteStatement, int)

IntPtr

UnsafeNativeMethods.sqlite3_column_database_name16_interop

(IntPtr, int, Int32&)

System.Data.SQLite.DLL

string ColumnTableName

(SQLiteStatement, int)

IntPtr UnsafeNativeMethods.sqlite3_column_table_name16_interop

(IntPtr, int, Int32&)
System.Data.SQLite.DLL

string GetParamValueText

(IntPtr)

IntPtr UnsafeNativeMethods.sqlite3_value_text16_interop (IntPtr,

Int32&)
System.Data.SQLite.DLL

void ReturnError (IntPtr, string) void UnsafeNativeMethods.sqlite3_result_error16 (IntPtr, string, int) System.Data.SQLite.DLL

void ReturnText (IntPtr, string)
void UnsafeNativeMethods.sqlite3_result_text16 (IntPtr, string, int,

IntPtr)
System.Data.SQLite.DLL

WeifenLuo.WinFormsUI.Docking.dll 2.3.1.28039 0 0 0 23

Calling Method P/Invoke Method
P/Invoke

Library

Control ControlAtPoint (Point) IntPtr NativeMethods.WindowFromPoint (Point) user32.dll

void set_DockPanel (DockPanel)
int NativeMethods.SetWindowPos (IntPtr, IntPtr, int, int, int, int,

FlagsSetWindowPos)
User32.dll

118

void set_BorderStyle (BorderStyle) int NativeMethods.GetWindowLong (IntPtr, int) user32.dll

void set_BorderStyle (BorderStyle) int NativeMethods.GetWindowLong (IntPtr, int) user32.dll

void set_BorderStyle (BorderStyle) int NativeMethods.SetWindowLong (IntPtr, int, int) user32.dll

void set_BorderStyle (BorderStyle) int NativeMethods.SetWindowLong (IntPtr, int, int) user32.dll

void WndProc (Message&) int NativeMethods.ShowScrollBar (IntPtr, int, int) user32.dll

void UpdateStyles ()
int NativeMethods.SetWindowPos (IntPtr, IntPtr, int, int, int, int,

FlagsSetWindowPos)
User32.dll

bool BeginDrag () bool NativeMethods.DragDetect (IntPtr, Point) User32.dll

void Show (bool) int NativeMethods.ShowWindow (IntPtr, Int16) User32.dll

void Activate (IDockContent) IntPtr NativeMethods.SetFocus (IntPtr) User32.dll

void Activate (IDockContent) IntPtr NativeMethods.SetFocus (IntPtr) User32.dll

void SetActivePane () IntPtr NativeMethods.GetFocus () User32.dll

IntPtr CoreHookProc (int, IntPtr, IntPtr) IntPtr NativeMethods.CallNextHookEx (IntPtr, int, IntPtr, IntPtr) user32.dll

IntPtr CoreHookProc (int, IntPtr, IntPtr) IntPtr NativeMethods.CallNextHookEx (IntPtr, int, IntPtr, IntPtr) user32.dll

void Install () int NativeMethods.GetCurrentThreadId () Kernel32.dll

void Install ()
IntPtr NativeMethods.SetWindowsHookEx (HookType,

NativeMethods/HookProc, IntPtr, int)
user32.dll

void Uninstall () int NativeMethods.UnhookWindowsHookEx (IntPtr) user32.dll

void WndProc (Message&) uint NativeMethods.SendMessage (IntPtr, int, uint, uint) User32.dll

void WndProc (Message&) uint NativeMethods.SendMessage (IntPtr, int, uint, uint) User32.dll

void WndProc (Message&) uint NativeMethods.SendMessage (IntPtr, int, uint, uint) User32.dll

void TestDrop (IDockDragSource,

DockOutlineBase)
uint NativeMethods.SendMessage (IntPtr, int, uint, uint) User32.dll

void CheckFloatWindowDispose () bool NativeMethods.PostMessage (IntPtr, int, uint, uint) User32.dll

QuickSharp.exe 2.0.0.26942 0 0 0 0

QuickSharp.vshost.exe 10.0.0.0 0 0 0 0

 Totals 0 8 8 114

119

Appendix C

Table for complete Messages Mapping

Windows Messages Scintilla Messages

EM_CANPASTE SCI_CANPASTE

EM_CANUNDO SCI_CANUNDO

EM_EMPTYUNDOBUFFER SCI_EMPTYUNDOBUFFER

EM_FINDTEXTEX SCI_FINDTEXT

EM_FORMATRANGE SCI_FORMATRANGE

EM_GETFIRSTVISIBLELINE SCI_GETFIRSTVISIBLELINE

EM_GETLINECOUNT SCI_GETLINECOUNT

EM_GETSELTEXT SCI_GETSELTEXT

EM_GETTEXTRANGE SCI_GETTEXTRANGE

EM_HIDESELECTION SCI_HIDESELECTION

EM_LINEINDEX SCI_ POSITIONFROMLINE

EM_LINESCROLL SCI_LINESCROLL

EM_REPLACESEL SCI_REPLACESEL

EM_SCROLLCARET SCI_SCROLLCARET

SCI_SETREADONLY EM_SETREADONLY

WM_CLEAR SCI_CLEAR

WM_COPY SCI_COPY

WM_CUT SCI_CUT

WM_GETTEXT SCI_GETTEXT

WM_SETTEXT SCI_SETTEXT

WM_GETTEXTLENGTH SCI_GETTEXTLENGTH

WM_PASTE SCI_PASTE

WM_UNDO SCI_UNDO

120

Appendix D

Table for full generic macros supported by QuickSharp

Macro Description

${SRC_PATH} Source file path

${SRC_FILE} Source file name

${SRC_NAME} Source file name without extension

${SRC_EXT} Source file extension

${OUT_PATH} Target output file path

${OUT_FILE} Target output file name

${OUT_NAME} Target output file name without extension

${OUT_EXT} Target output file extension

${IDE_HOME} QuickSharp installation directory

${USR_HOME} QuickSharp user data directory

${USR_DOCS} User's "My Documents" folder

${SYSTEM} Windows system directory (usually C:\WINDOWS\system32)

${PFILES} Windows "Program Files" directory

${WORKSPACE} Workspace directory name

${COMMON_OPT} Option flags while building

${EMBEDDED_OPT} The QuickSharp’s native features to manage build process embedded in

source code

${RUNTIME_OPT} Runtime arguments passed to a program and embedded in the source

121

References

1. Raspberry Pi Foundation. What is a Raspberry Pi. Retrieved from

http://www.raspberrypi.org/help/what-is-a-raspberry-pi/

2. Raspberry Pi Foundation. Raspberry Pi – 2006 Edition. Retrieved from

http://www.raspberrypi.org/raspberry-pi-2006-edition/

3. Rasp.TV. (2017. February 28). New Raspberry Pi Family Photo 28 Feb 2017.

Retrieved from http://raspi.tv/2017/new-raspberry-pi-family-photo-28-feb-2017

4. Raspberry Pi Foundation. RASPBERRY PI 2 MODEL B.

Retrieved from https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

5. Raspberry Pi Foundation. FAQS: Performance and Cost Consideration.

Retrieved from https://www.raspberrypi.org/help/faqs/#topCost

6. Wikipedia Editor. Raspberry Pi. Retrieved from

http://en.wikipedia.org/wiki/Raspberry_Pi

7. Raspberry Pi Foundation. Downloads. Retrieved from

https://www.raspberrypi.org/downloads/

8. Raspberry Pi Foundation. FAQS: WILL IT RUN WINE (OR WINDOWS, OR OTHER

X86 SOFTWARE). Retrieved from

https://www.raspberrypi.org/help/faqs/#softwareX86

9. UDOO. UDOO QUAD/DUAL. Retrieved from https://www.udoo.org/udoo-dual-and-

quad/

10. Wikipedia Editor. UDOO. Retrieved from https://en.wikipedia.org/wiki/UDOO

11. eLinux wiki. UDOO. Retrieved from http://elinux.org/UDOO

12. SolidRun. HummingBoard SolidRun. Retrieved from

https://www.solid-run.com/freescale-imx6-family/hummingboard/

13. Beagleboard. Beagleboard Black. Retrieved from https://beagleboard.org/black

14. Promit’s Ventspace. DirectX/XNA Phase Out Continues. Retrieved from

https://ventspace.wordpress.com/2013/01/30/directxxna-phase-out-continues/

15. Wang, L. (2014). XNA-like 3D Graphics Programming on the Raspberry Pi (Master’s

thesis. University of Waikato, Hamilton, New Zealand). Retrieved from

122

http://researchcommons.waikato.ac.nz/handle/10289/8802

16. Boud, J. (2012). Extending SlimDXna to Use XNA 4 and DirectX 11 (Dissertation,

University of Waikato, Hamilton, New Zealand)

17. Code MSDN Microsoft. Visual Basic XNA. Retrieved from

https://code.msdn.microsoft.com/windowsapps/Visual-Basic-XNA-29cd4963

18. Wikipedia Editor. Microsoft_XNA. Retrieved from

https://en.wikipedia.org/wiki/Microsoft_XNA

19. CodePlex. JBBRXG11. Retrieved from https://jbbrxg11.codeplex.com/

20. Raspberry Pi Foundation. Libraries Codecs Oss. Retrieved from

https://www.raspberrypi.org/blog/libraries-codecs-oss/

21. Khronos Group. OpenGL ES 2_X Overview Retrieved from

https://www.khronos.org/opengles/2_X/

22. Long, S. Introducing PIXEL. Retrieved from

https://www.raspberrypi.org/blog/introducing-pixel/

23. Wikipedia Editor. X Window System. Retrieved from

https://en.wikipedia.org/wiki/X_Window_System

24. QuickSharp. QuickSharp. Retrieved from

http://quicksharp.sourceforge.net/

25. Standard ECMA-335. Common Language Infrastructure (CLI). Retrieved from

http://www.ecma-international.org/publications/standards/Ecma-335.htm

26. Scintilla. Scintilla Documentation. Retrieved from http://www.scintilla.org/

27. DockPanel Suite. DockPanel Suite Documentation. Retrieved from

http://docs.dockpanelsuite.com/en/latest/

28. Microsoft. Microsoft takes .NET open source and cross-platform, adds new

development capabilities with Visual Studio 2015, .NET 2015 and Visual Studio

Online. Retrieved from https://news.microsoft.com/2014/11/12/microsoft-takes-net-

open-source-and-cross-platform-adds-new-development-capabilities-with-visual-

studio-2015-net-2015-and-visual-studio-online/

29. Mono. Mono Documentation. Retrieved from

http://www.mono-project.com/docs/about-mono/

123

30. Mono. Stetic GUI Designer. Retrieved from

http://www.monodevelop.com/documentation/stetic-gui-designer/

31. Pobst, J. Porting Winforms Applications. Retrieved from http://www.mono-

project.com/docs/gui/winforms/porting-winforms-applications/

32. GNU. Code-Gen-Options. Retrieved from https://gcc.gnu.org/onlinedocs/gcc/Code-

Gen-Options.html

33. Man7. Linux Programmer's Manual. Retrieved from: http://man7.org/linux/man-

pages/man3/dlopen.3.html

34. Microsoft MSDN. Message Structure. Retrieved from

https://msdn.microsoft.com/enus/library/system.windows.forms.message(v=vs.110).a

spx

35. Mayank. The Linux filesystem explained. Retrieved from

http://freeos.com/articles/3102

36. Github. SharpZipLib. Retrieved from

http://icsharpcode.github.io/SharpZipLib/

37. Mono. Guide: Fixing issues MoMA finds. Retrieved from

http://www.mono-project.com/archived/moma/issue-descriptions/

38. Wang. L. (2014). ExamplePrograms (Test programs of Master’s thesis. University of

Waikato, Hamilton, New Zealand). Retrieved from

http://researchcommons.waikato.ac.nz/handle/10289/8802

39. Danson, N. (2013). Building Mono on a Raspberry Pi(Hard Float). Retrieved from

https://neildanson.wordpress.com/2013/12/10/building-mono-on-a-raspberry-pi-hard-

float/

